【總結(jié)】第2講空間幾何體的表面積與體積【2020年高考會這樣考】考查柱、錐、臺、球的體積和表面積,由原來的簡單公式套用漸漸變?yōu)榕c三視圖及柱、錐與球的接切問題相結(jié)合,難度有所增大.【復(fù)習(xí)指導(dǎo)】本講復(fù)習(xí)時,熟記棱柱、棱錐、圓柱、圓錐的表面積和體積公式,運用這些公式解決一些簡單的問題.基礎(chǔ)梳理1.柱、錐、臺和球的側(cè)面積和體積面
2025-08-22 01:40
【總結(jié)】空間距離問題(專注高三數(shù)學(xué)輔導(dǎo):QQ1550869062)空間中距離的求法是歷年高考考查的重點,其中以點與點、點到線、點到面的距離為基礎(chǔ),求其他幾種距離一般化歸為這三種距離.●難點磁場(★★★★)如圖,已知ABCD是矩形,AB=a,AD=b,PA⊥平面ABCD,PA=2c,Q是PA的中點.求:(1)Q到BD的距離;(2)P到平面BQ
2025-03-25 06:44
【總結(jié)】廈門一中立體幾何專題一、選擇題(10×5′=50′)第1題圖,設(shè)O是正三棱錐P-ABC底面三角形ABC的中心,過O的動平面與P-ABC的三條側(cè)棱或其延長線的交點分別記為Q、R、S,則(),且最大值與最小值不等,相鄰兩側(cè)面所成的二面角的取值范圍是
2025-04-04 05:03
【總結(jié)】立體幾何空間直線解答題空間直線解答題1、在空間四邊形ABCD中,各邊長和對角線長均為a,點E、F分別是BD、AC的中點,求異面直線AE和BF所成的角.2、如圖,空間四邊形ABCD中,AB=AD=2,BC=DC=1,AD和
2024-11-11 13:18
【總結(jié)】高三單元滾動檢測卷·數(shù)學(xué)考生注意:1.本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,共4頁.2.答卷前,考生務(wù)必用藍、黑色字跡的鋼筆或圓珠筆將自己的姓名、班級、學(xué)號填寫在相應(yīng)位置上.3.本次考試時間120分鐘,滿分150分.4.請在密封線內(nèi)作答,保持試卷清潔完整.單元檢測八立體幾
2025-01-09 11:37
【總結(jié)】主頁主頁1.了解空間向量的概念.了解空間向量的基本定理及其意義,掌握空間向量的正交分解及其坐標(biāo)表示.2.掌握空間向量的線性運算及其坐標(biāo)表示.3.掌握空間向量的數(shù)量積及其坐標(biāo)表示,能用向量的數(shù)量積判斷向量的共線與垂直.一、空間直角坐標(biāo)系的建立及相關(guān)概念:以單位正方體ABCD—A'B'C'D&
2025-04-29 05:53
【總結(jié)】 回扣5 立體幾何與空間向量 1.柱、錐、臺、球體的表面積和體積 側(cè)面展開圖 表面積 體積 直棱柱 長方形 S=2S底+S側(cè) V=S底·h 圓柱 長方形 S=2πr2+...
2025-04-03 03:46
【總結(jié)】空間圖形性質(zhì)的應(yīng)用例1正方體棱長a,有一小蟲在正方體表面上從頂點A爬到頂點C1,求小蟲爬行的最短距離.A1AC1D1BB1DC例2、一段筆直的道路旁有一條河,河對岸有電塔AB,高15m,只有測角器和皮尺作測量工具,不過河怎樣求出電塔頂A與道路的距離?解:在道邊取一點C,使BC
2024-10-16 03:03
【總結(jié)】立體幾何專題復(fù)習(xí)練習(xí):三視圖“前面、后面、上面、下面、左面、右面”表示,如圖是這個正方體的表面積展開圖,若圖中“努”在正方體的后面,那么這個正方體的前面是() A.定 B.有 C.收 D.獲,點、、、、均在半徑為1的同一球面上,則底面的中心與頂點之間的距離為()(A)(B)(C)(D)
2025-03-26 05:40
【總結(jié)】[備考方向要明了]考什么怎么考.、直線與平面、平面與平面的垂直、平行關(guān)系.(包括三垂線定理).、直線與平面、平面與平面的夾角的計算問題.了解向量方法在研究立體幾何問題中的應(yīng)用.,而平面法向量則多滲透在解答題中考查.、面位置關(guān)系,在高考有所體現(xiàn),如2012年陜西T18,可用向量法證明.,多以解答題形式考查,并且作為解答題的第二種方法考查,
2025-06-25 00:21
【總結(jié)】歡迎光臨《中學(xué)數(shù)學(xué)信息網(wǎng)》《中學(xué)數(shù)學(xué)信息網(wǎng)》系列資料版權(quán)所有@《中學(xué)數(shù)學(xué)信息網(wǎng)》ABCDEFGHIJ2020屆高三數(shù)學(xué)第一輪復(fù)習(xí)單元測試(8)—《立體幾何》一、選擇題(本大題共12
2025-08-13 11:56
【總結(jié)】分類突破題型一、利用向量證明平行與垂直例1如圖所示,已知直三棱柱ABC—A1B1C1中,△ABC為等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分別為B1A、
2025-08-05 10:54
【總結(jié)】空間向量在立體幾何中的應(yīng)用【例1】已知三棱錐P-ABC中,PA⊥面ABC,AB⊥AC,PA=AC=AB,N為AB上一點,AB=4AN,M,S分別為PB,BC的中點.(Ⅰ)證明:CM⊥SN;(Ⅱ)求SN與平面CMN所成角的大小.證明:設(shè)PA=1,以A為原點,射線AB,AC,AP分別為x,y,z軸正向建立空間直角坐標(biāo)系如圖.則P(0,0,1),C(0,1,0),B
2025-08-18 16:48
【總結(jié)】1用空間向量處理立體幾何的問題立體幾何著重的是研究點、線、面之間的關(guān)系,研究空間三種位置關(guān)系(即空間直線與直線、直線與平面、平面與平面)以及三種角(異面直線所成的角、直線與平面所成的角和二面角)的計算。自上海高考試卷內(nèi)容改革以來,純粹用立體幾何的公理、定理來證明或計算立體幾何問題越來越少,而借助于向量的計算方法來處理立體幾何的問題卻越來越多。本講座就是詳細(xì)
2025-08-27 17:12
【總結(jié)】一、選擇題 1、如圖,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某 1幾何體的三視圖,則此幾何體的體積為(B) ()A6()B9()C??()D? 2、平面α截球O的球面所得圓的半徑為1, 球心O到平面α的距離為,則此球的體積為(B) 2(A)π(B)4π(C)4π
2025-08-08 23:03