freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

數(shù)學說課稿二年級數(shù)學說課稿(15篇)(編輯修改稿)

2025-08-08 19:23 本頁面
 

【文章內容簡介】 對知識進行升華。鞏固練習隨著問題的逐一呈現(xiàn),學生在解決問題時靈活選擇方法,是對認知結構不斷的構建、重組、內化、升華。在知情交融的過程中,掌握四基(基礎知識、基本技能、基本思想、基本活動經驗),達到三維立體目標的和諧統(tǒng)一。(四)質疑反思,總結評價。分三個層次:先讓學生交流本堂課的收獲和感想;接著由學生自評、互評自己在本課中的表現(xiàn);最后由教師進行總結,特別是對數(shù)學思想的體現(xiàn),并針對大家的交流情況及突出的課堂表現(xiàn)作概述性評價。這樣的安排主要讓學生反思自己的學習過程,領會學習方法,獲得經驗。力求重點突出,簡潔明了。針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高總之,本節(jié)課的教學設計我以促進學生的發(fā)展為主,讓學生實實在在地經歷長方體體積計算公式的推導過程,給學生充分的思考以及表現(xiàn)自我的時間和空間,并培養(yǎng)他們解決實際問題的能力。同時,借助現(xiàn)代信息技術手段將數(shù)學知識的抽象性和學生思維的形象性有機結合。數(shù)學說課稿 二年級數(shù)學說課稿篇六“正數(shù)與負數(shù)”是人教版七年級數(shù)學上冊第一章第一節(jié)的內容,屬于“數(shù)與代數(shù)”,又是后面研究有理數(shù)的基礎,不僅要讓學生學會區(qū)分正、負數(shù)以及用正、負數(shù)表示相反意義的量,根據(jù)課程標準和學生認知特點,我確定如下三維教學目標:(1)知識與技能:理解正、負數(shù)的概念,了解正數(shù)與負數(shù)是從實際需要中產生的。會列舉出周圍具有相反意義的量,并用正負數(shù)來表示。會判斷一個數(shù)是正數(shù)還是負數(shù)。明確零既不是正數(shù),也不是負數(shù)。(2)過程與方法:探索負數(shù)概念的形成過程,使學生建立正數(shù)與負數(shù)的數(shù)感。(3)情感態(tài)度與價值觀:實際例子的引入,讓學生體驗到數(shù)學來源于生活,服務于生活,激發(fā)學生學習數(shù)學的興趣。根據(jù)本節(jié)課的教學內容,考慮到學生已有的認知結構和心理特征,我將確定如下教學重難點:教學重點:了解正、負數(shù)的意義,學會用正、負數(shù)表示日常生活中具有相反意義的量。教學難點:了解負數(shù)的意義及0的內涵。為了突出重點,突破難點,使學生能夠達到教學目標,我將在教法上采用引導啟發(fā)法和講解傳授法相結合的方法來完成本節(jié)課的教學。這是因為七年級的學生個性活潑,學習積極性高。在整個過程中,我將講解和分析與學生自己歸納相融合,激發(fā)學生的學習興趣。鼓勵學生積極主動地參與到教與學的39。整個過程,對學生的回答與表現(xiàn)給予肯定、表揚,由此保護并發(fā)展學生學習數(shù)學的好奇心、積極性。在教學方法和理念的引領下,我將本節(jié)課的教學過程設計分為五個部分:創(chuàng)設情境,引入新課。合作交流,探索新知。鞏固練習,熟練技能??偨Y反思,發(fā)展情意。布置作業(yè)。(一)創(chuàng)設情境,引入新課首先我讓學生觀察課本上的三幅圖,通過設置問題串,讓學生復習小學學過的自然數(shù)、零和分數(shù),:某市某天的最高氣溫是零上3℃,最低氣溫是零下3℃,要表示這兩個溫度,如果都記作3℃,用以前學過的數(shù)不能簡潔清楚地表示這兩個數(shù),由此需要產生一種新數(shù),既符合學生已有的認知基礎,又能夠較好地激發(fā)學生探索問題的欲望。(二)合作交流,探索新知接著,我根據(jù)學生已經產生的認知沖突及時地給出4個實際例子讓學生練習,幫助他們理解具有相反意義的量,進入合作交流,:例1:氣溫有零上3℃和零下3℃。例2:高于海平面8848米和低于海平面155米。例3:收入50元和支出32元。例4:,很容易就發(fā)現(xiàn):零上和零下,高于和低于,收入和支出,進一步歸納出它們的共同特點:零上和零下,高于和低于,收入和支出,向東和向西,:足球比賽中的凈贏球和凈輸球。花生產量的增長和減少。,一方面能夠充分調動學生參與的熱情,另一方面也為新知的展開鋪平了道路.幫助學生理解了具有相反意義的量后,我將帶領學生回到創(chuàng)設情境中產生的問題:零上3℃和零下3℃應該如何表示?一邊引導學生,一邊歸納總結:對于具有相反意義的兩個量,如果其中一種量用正數(shù)表示,我們規(guī)定盈利、存入、增加、上升為正,虧損、支出、減少、℃和零下3℃可以表示成+3℃和3℃。收入50元和支出32元可以表示成+50元和32元.這里建立正數(shù)與負數(shù)的概念時,我會特別強調,零既不是正數(shù)也不是負數(shù),0不僅僅表示“沒有”的意義,還有確定的意義,比如0℃就是一個確定的溫度.(三)鞏固練習,熟練技能為了使學生實現(xiàn)由掌握知識到運用知識的轉化,我將通過形式不同的練習,:判斷正、負數(shù)以及用正、負數(shù)的時候,我將再一次強調學生的易錯點:0既不是正數(shù),:如果水位升高3m時水位變化記作+3m,那么水位下降3m時水位變化就可以記作3m,、,反饋調整,有利于提高課堂的教學效率,減輕學生的課外負擔.(四)總結反思,發(fā)展情意練習之后,我將引導學生通過回顧本節(jié)課所學內容,結合教學目標,歸納總結出本節(jié)課的知識要點:(1)用正數(shù)與負數(shù)表示具有相反意義的量。(2),促進學生記憶,而且可以讓學生的知識結構更合理、更完善、更有所側重.(五)布置作業(yè)最后,針對所有學生的實際情況,布置課后練習作業(yè),并將作業(yè)進行分層,這樣可以充分調動學生的學習積極性,同時也適應了不同學生的不同要求,切實減輕學生的課業(yè)負擔.各位老師,以上說課只是我在短時間內以教師為主導,學生為主體為指導思想設計出來的一種方案,一定存在很多不足的地方,如果準備時間充分的話,我會在教學過程這一模塊進行更多細節(jié)的探討,讓本節(jié)課的內容講授更貼近學生的實際情況,讓學生更容易接受新知識.數(shù)學說課稿 二年級數(shù)學說課稿篇七教材的地位和作用:數(shù)列是高中數(shù)學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面, 數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分。另一方面,學習數(shù)列也為進一步學習數(shù)列的極限等內容做好準備。而等差數(shù)列是在學生學習了數(shù)列的有關概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學習等比數(shù)列提供了學習對比的依據(jù)。教學目標根據(jù)教學大綱的要求和學生的實際水平,確定了本次課的教學目標a在知識上:理解并掌握等差數(shù)列的概念。了解等差數(shù)列的通項公式的推導過程及思想。初步引入“數(shù)學建?!钡乃枷敕椒ú⒛苓\用。b在能力上:培養(yǎng)學生觀察、分析、歸納、推理的能力。在領會函數(shù)與數(shù)列關系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學生的知識、方法遷移能力。通過階梯性練習,提高學生分析問題和解決問題的能力。c在情感上:通過對等差數(shù)列的研究,培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求知精神。養(yǎng)成細心觀察、認真分析、善于總結的良好思維習慣。教學重點和難點根據(jù)教學大綱的要求我確定本節(jié)課的教學重點為:①等差數(shù)列的概念。②等差數(shù)列的通項公式的推導過程及應用。由于學生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導等差數(shù)列的同項公式是這節(jié)課的一個難點。同時,學生對“數(shù)學建?!钡乃枷敕椒ㄝ^為陌生,因此用數(shù)學思想解決實際問題是本節(jié)課的另一個難點。二、學情分析對于三中的高一學生,知識經驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導、啟發(fā)、研究和探討以符合這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。針對高中生這一思維特點和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結合的教學方法,通過問題激發(fā)學生求知欲,使學生主動參與數(shù)學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發(fā)現(xiàn)、分析和解決問題。讓學生去聯(lián)想、探索,同時鼓勵學生大膽質疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。本節(jié)課的教學過程由(一)復習引入(二)新課探究(三)應用舉例(四)反饋練習(五)歸納小結(六)布置作業(yè),六個教學環(huán)節(jié)構成。(一)復習引入:,數(shù)列可看作是定義域為__________對應的一列函數(shù)值,從而數(shù)列的通項公式也就是相應函數(shù)的______ 。(n*。解析式)通過練習1復習上節(jié)內容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準備。2. 小明目前會100個單詞,他她打算從今天起不再背單詞了,結果不知不覺地每天忘掉2個單詞,那么在今后的五天內他的單詞量逐日依次遞減為: 100,98,96,94,92 ①3. 小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內他的單詞量逐日依次遞增為 5,10,15,20,25 ②通過練習2和3 引出兩個具體的等差數(shù)列,初步認識等差數(shù)列的特征,為后面的概念學習建立基礎,為學習新知識創(chuàng)設問題情境,激發(fā)學生的求知欲。由學生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結又培養(yǎng)學生由具體到抽象、由特殊到一般的認知能力。(二) 新課探究由引入自然的給出等差數(shù)列的概念:如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列, 這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調:① “從第二項起”滿足條件。②公差d一定是由后項減前項所得。③每一項與它的前一項的差必須是同一個常數(shù)(強調“同一個常數(shù)” )。在理解概念的基礎上,由學生將等差數(shù)列的文字語言轉化為數(shù)學語言,歸納出數(shù)學表達式:an+1an=d (n≥1)同時為了配合概念的理解,我找了5組數(shù)列,由學生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。1. 9 ,8,7,6,5,4,……?!?d=12. ,,……?!?d=3. 0,0,0,0,0,0,…….。 √ d=04. 1,2,3,2,3,4,……。5. 1,0,1,0,1,……其中第一個數(shù)列公差0,0,第三個數(shù)列公差=0由此強調:公差可以是正數(shù)、負數(shù),也可以是0第二個重點部分為等差數(shù)列的通項公式在歸納等差數(shù)列通項公式中,我采用討論式的教學方法。給出等差數(shù)列的首項,公差d,由學生研究分組討論a4 的通項公式。通過總結a4的通項公式由學生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學生完成,通過互相討論的方式既培養(yǎng)了學生的協(xié)作意識又化解了教學難點。若一等差數(shù)列{an }的首項是a1,公差是d,則據(jù)其定義可得:a2 a1 =d 即: a2 =a1 +da3 – a2 =d 即: a3 =a2 +d = a1 +2da4 – a3 =d 即: a4 =a3 +d = a1 +3d……猜想: a40 = a1 +39d進而歸納出等差數(shù)列的通項公式:an=a1+(n1)d此時指出:這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養(yǎng)學生嚴謹?shù)膶W習態(tài)度,在這里向學生介紹另外一種求數(shù)列通項公式的辦法迭加法:a2 – a1 =da3 – a2 =da4 – a3 =d……an – an1=d將這(n1)個等式左右兩邊分別相加,就可以得到 an– a1= (n1) d即 an= a1+(n1) d (1)當n=1時,(1)也成立,所以對一切n∈n*,上面的公式都成立因此它就是等差數(shù)列{an}的通項公式。在迭加法的證明過程中,我采用啟發(fā)式教學方法。利用等差數(shù)列概念啟發(fā)學生寫出n1個等式。對照已歸納出的通項公式啟發(fā)學生想出將n1個等式相加。證出通項公式。在這里通過該知識點引入迭加法這一數(shù)學思想,逐步達到“注重方法,凸現(xiàn)思想” 的教學要求接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n1)2 , 即an=2n1 以此來鞏固等差數(shù)列通項公式運用同時要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個孤立點。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質顯現(xiàn)得更加清楚。(三)應用舉例這一環(huán)節(jié)是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向學生表明:要用運動變化的觀點看等差數(shù)列通項公式中的ad、n、an這4個量之間的關系。當其中的部分量已知時,可根據(jù)該公式求出另一部分量。例1 (1)求等差數(shù)列8,5,2,…的第20項。第30項。第40項(2)401是不是等差數(shù)列5,9,13,…的項?如果是,是第幾項?在第一問中我添加了計算第30項和第40項以加強鞏固等差數(shù)列通項公式。第二問實際上是求正整數(shù)解的問題,而關鍵是求出數(shù)列的通項公式an例2 在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項a1與公差d。在前面例1的基礎上將例2當作練習作為對通項公式的鞏固例3 是一個實際建模問題建造房屋時要設計樓梯,已知某大樓第2層的樓底離地面的高度為3米,若樓梯設計為等高的16級臺階,問每級臺階高為多少米?這道題我采用啟發(fā)式和討論式相結合的教學方法。啟發(fā)學生注意每級臺階“等高”使學生想到每級臺階離地面的高度構成等差數(shù)列,引導學生將該實際問題轉化為數(shù)學模型等差數(shù)列:(學生討論分析,分別演板,教師評析問題。問題可能出現(xiàn)在:項數(shù)學生認為是16項,應明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用課件展示實際樓梯圖以化解難點)設置此題的目的:,激發(fā)了學生的興趣?!皬膶嶋H問題出發(fā)經抽象概括建立數(shù)學模型,最后還原說明實際問題的“數(shù)學建?!钡臄?shù)學思想方法(四)反饋練習小節(jié)后的練習中的第1題和第2題(要求學生在規(guī)定時間內完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。書上例3)梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。目的:對學生加強建模思想訓練。若數(shù)例{an} 是等差數(shù)列,若 bn = k an ,(k為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列此題是對學生進行數(shù)列問題提高訓練,學習如何用定義證明數(shù)列問題同時強化了等差數(shù)列的概念。(五)歸納小結(由學生總結這節(jié)課的收獲).強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù) an= a1+(n1) d會知三求一“數(shù)學建模”思想方法解決實際問題(六)布置作業(yè)必做題:課本p114 ,6 題選做題:已知等差數(shù)列{an}
點擊復制文檔內容
職業(yè)教育相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1