【總結(jié)】平面向量基本定理問題情境火箭在飛行過程中的某一時刻速度可以分解成豎直向上和水平向前的兩個速度。在力的分解的平行四邊形過程中,我們看到一個力可以分解為兩個不共線方向的力之和。那么平面內(nèi)的任一向量否可以用兩個不共線的向量來表示呢?動畫演示平面向量基本定理12121122,,
2024-10-19 17:16
【總結(jié)】人教版高一數(shù)學(xué)第二學(xué)期第五章第主講:特級教師王新敞《高中數(shù)學(xué)同步輔導(dǎo)課程》平面向量的基本定理2020/12/17特級教師王新敞----源頭學(xué)子2奎屯王新敞新疆教學(xué)目的:教學(xué)重點:教學(xué)難點:1.了解平面向量基本定理的證明.2.掌握平面向量基本定理及其應(yīng)用:①平面內(nèi)的任
2024-11-10 03:15
【總結(jié)】平面向量基本定理課時練1.給出下面三種說法:①一個平面內(nèi)只有一對不共線的非零向量可作為表示該平面所有向量的基底;②一個平面內(nèi)有無數(shù)多對不共線的非零向量可作為表示該平面所有向量的基底;③零向量不可為基底中的向量.其中正確的說法是( )A.①② B.②③C.①③ D.②解析:因為不共線的兩個向量都可以作為一組基底,所以一個平面內(nèi)有無數(shù)多個基底,又零向
2025-03-25 01:22
【總結(jié)】§高一()班姓名:上課時間:【目標(biāo)與導(dǎo)入】1、學(xué)習(xí)平面向量基本定理及其應(yīng)用;2、學(xué)會在具體問題中適當(dāng)選取基底,使其他向量能夠用基底來表達(dá)。【預(yù)習(xí)與檢測】1、點C在線段AB上,且,,則等于()ABA、B、
2025-04-16 23:06
【總結(jié)】......專題八平面向量的基本定理(A卷)(測試時間:120分鐘滿分:150分)第Ⅰ卷(共60分)一、選擇題:本大題共12個小題,每小題5分,,只有一項是符合題目要求的.,向量,則向量()A.
【總結(jié)】“平面向量基本定理”課后反思乳山市第二中學(xué)于水英新課程標(biāo)準(zhǔn)指出:“學(xué)生的數(shù)學(xué)學(xué)習(xí)活動不應(yīng)只限于接受、記憶、模仿和練習(xí)高中數(shù)學(xué)課程還應(yīng)倡導(dǎo)自主探究、動手實踐、合作交流等學(xué)習(xí)數(shù)學(xué)的方式……”,再者由于平面向量基本定理內(nèi)容比較抽象,學(xué)生理解起來有一定的困難,基于這兩方面的原因,所以本節(jié)課的教學(xué)設(shè)計的出發(fā)點是讓學(xué)生在“觀察--嘗試—收獲”中,全程參與知識的形成過程,在教師提出問題后能
2025-07-20 14:23
【總結(jié)】第一篇:平面向量基本定理(教學(xué)設(shè)計) 平面向量基本定理 教學(xué)設(shè)計 平面向量基本定理教學(xué)設(shè)計 一、教材分析 本節(jié)課是在學(xué)習(xí)了共線向量基本定理的前提下,進(jìn)一步研究平面內(nèi)任一向量的表示,為今后平面...
2024-11-15 04:09
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量基本定理學(xué)業(yè)達(dá)標(biāo)測試新人教A版必修41.設(shè)O點是平行四邊形ABCD兩對角線的交點,下列向量組中可作為這個平行四邊形所在平面上表示其他所有向量的基底的是()①AD→與AB→;②DA→與BC→;③CA→與DC→;④OD→與OB→.A.①②B.①③
2024-12-08 13:12
【總結(jié)】專題八平面向量的基本定理(A卷)(測試時間:120分鐘滿分:150分)第Ⅰ卷(共60分)一、選擇題:本大題共12個小題,每小題5分,,只有一項是符合題目要求的.,向量,則向量()A.B.C.D. 【答案】A【解析】∵=(3,1),∴=(-7,-4),故選A.2.【201
【總結(jié)】......平面向量基本定理及坐標(biāo)表示1.平面向量基本定理如果e1、e2是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量a,存在唯一一對實數(shù)λ1、λ2,使a=λ1e1+λ2e2,其中,不共線的向量e1、e2叫做表示這一平面內(nèi)所有
2025-06-30 20:18
【總結(jié)】平面向量基本定理一、問題情境(1)如何求此時豎直和水平方向速度?(2)利用什么法則?BAMN探究:給定平面內(nèi)兩個向量、,平面內(nèi)任一向量是否都可以在這兩向量方向上分解呢?分解平移共同起點OAB?鏈接幾何畫板平面向量基本定理
2024-11-12 17:12
【總結(jié)】當(dāng)時,0??與同向,ba且是的倍;||b||a?當(dāng)時,0??與反向,ba且是的倍;||b||a||?當(dāng)時,0??0b?,且。||0
2024-11-09 03:31
【總結(jié)】學(xué)大教育個性化教學(xué)教案BeijingXueDaCenturyEducationTechnologyLtd.個性化教學(xué)輔導(dǎo)教案學(xué)科:數(shù)學(xué)任課教師:劉興峰授課日期:年月日(星期)姓名任泳琪年級高一性別女授課時間段總課時第課
2025-08-04 16:20
【總結(jié)】沈陽市第三十五中學(xué)生本課堂導(dǎo)學(xué)案課題:平面向量基本定理科目:數(shù)學(xué)設(shè)計人:秦穎備課組長:陳艷萍年級主任:張寶東沈陽市第三十五中學(xué)生本課堂導(dǎo)學(xué)案學(xué)習(xí)目標(biāo):(1)理解平面里的任何一個向量都可以用兩個不共線的向量來表示,能夠在具體問題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底來表達(dá)。(2)培養(yǎng)獨立思考及勇于探求的精神;
2025-08-17 14:03
【總結(jié)】應(yīng)用平面向量基本定理解題舉例秭歸一中數(shù)學(xué)組周宗圣向量融數(shù)、形于一體,具有幾何與代數(shù)形式的雙重身份,因此向量的引入與應(yīng)用極大地拓寬了解題的思想與方法。其解題方法歸納如下::將題目已知條件轉(zhuǎn)化成形式,其中、不共線,則.例1:設(shè)、、為非零向量,其中任意兩個向量不共線,已知+與共線,且+與共線,試問與+是否共線?并證明你的結(jié)論.證明:∵與共線,∴存在唯一實數(shù),使得=
2025-03-26 04:29