【總結】八年級數(shù)學勾股定理練習:(1)在△ABC中,∠C=Rt∠.若a=2,b=3則c=若a=5,c=b=.若c=61,b=a=.若a∶c=3∶5且c=20則b=.若∠A=60°且AC=7cm則AB=cm,BC=cm.(2)直角三角形一條直角邊與斜
2025-11-02 05:00
【總結】你能看出會徽與弦圖之間的聯(lián)系嗎?2021年世界數(shù)學大會的會徽著名的“趙爽弦圖”你知道這三個正方形的面積分別是多少嗎圖1三個正方形A,B,C的面積之間有什么關系?SA+SB=SCA的面積(單位面積)B的面積(單位面積)C的面積(單位面積)圖1
2024-12-07 13:02
【總結】1、若c為直角△ABC的斜邊,b、a為直角邊,則a、b、c的關系為___________2、在Rt△ABC中,∠C=Rt∠,CD⊥AB,若BC=15,AC=20,則AB=_____,AD=__,BD=__,CD=__。3、在Rt△ABC中,∠C=Rt∠,CD、CE分別是
2024-12-07 13:18
【總結】第1頁共3頁八年級數(shù)學勾股定理及其逆定理(勾股定理)基礎練習試卷簡介:全卷共6個選擇題,5個填空題,2個大題,分值100,測試時間30分鐘。本套試卷立足基礎,主要考察了學生對勾股定理及其逆定理基礎知識及基本運用的的掌握。各個題目難度有階梯性,學生在做題過程中可以回顧本章知識點,認清自己對知識的掌握及靈活運用程
2025-08-11 13:39
【總結】第一章勾股定理1探索勾股定理2022秋季數(shù)學八年級上冊?B認識勾股定理直角三角形兩直角邊的等于斜邊的,如果用a、b、c分別表示直角三角形的兩直角邊和斜邊,那么.自我診斷1.1.在△ABC中,∠C=90°,a、
2025-06-20 20:23
【總結】第1頁共4頁八年級數(shù)學勾股定理拓展提高(勾股定理)拔高練習試卷簡介:本測試卷共有13道題,其中5道填空題,5道解答題,3道證明題,分四個板塊,板塊一為回顧練習,回顧暑期學到的關于勾股定理的主要知識,相關題目為教材1、2、3題;板塊二為直角三角形六大性質,勾股定理只是直角三角形六大性質之一,將直角三角形
2025-08-11 10:00
【總結】北師大版八年級上冊第一章第一節(jié)探索勾股定理(第1課時)教學設計第一章勾股定理1.探索勾股定理(第1課時)一、學生起點分析八年級學生已經(jīng)具備一定的觀察、歸納、探索和推理的能力.在小學,他們已學習了一些幾何圖形面積的計算方法(包括割補法),但運用面積法和割補思想解決問題的意識和能力還遠遠不夠.部分學生聽說過“勾三股四弦五”,但并沒有真正認識什么是“勾股定理”.此外,學生普遍學習積
2025-04-16 22:20
【總結】第一篇:八年級數(shù)學元勾股定理教案 課題:《勾股定理》 張窩中學馬宏躍 一、教材分析: 1、人民教育出版社出版,人民教育出版社中學數(shù)學室編著,九年義務教育八年級教科書《幾何》,第三章第五單元《勾...
2025-10-26 17:21
【總結】第一章勾股定理3勾股定理的應用2022秋季數(shù)學八年級上冊?B立體圖形表面兩點之間的最短距離求立體圖形表面兩點之間的最短距離問題.解決此類問題的依據(jù)是:兩點之間,最短.為此需先將立體圖形的表面展開,將立體圖形轉化為圖形;再作兩點之間的,構造直角三角形;最后通過
2025-06-20 12:13
2025-06-18 12:27
【總結】第14章勾股定理勾股定理的應用2022秋季數(shù)學八年級上冊?HS立體圖形上的最短距離:將立體圖形側面展開,確定兩點在展開圖上的位置,連成,的長度就是立體圖形上的兩點間的最短距離.自我診斷1.如圖,長方體的高為3cm,底面是正方形,邊長為2cm,現(xiàn)在一蟲子從點A出發(fā),沿長方體表面到
2025-06-13 14:08
【總結】在同一平面內,兩點之間,線段最短創(chuàng)設情境明確目標從行政樓A點走到教學樓B點怎樣走最近?教學樓行政樓BA你能說出這樣走的理由嗎?在同一平面內,如圖螞蟻在圓柱體的A點沿側面爬行到B點,怎樣爬路程最短?創(chuàng)設情境明確目標BA
2025-06-12 12:08
【總結】八年級數(shù)學競賽培訓:勾股定理 一、填空題(共9小題,每小題4分,滿分36分)1.(4分)(2001?重慶)如圖,以等腰直角三角形ABC的斜邊AB為邊向內作等邊△ABD,連接DC,以DC為邊作等邊△DCE.B、E在C、D的同側,若AB=,則BE= _________?。?.(4分)如圖所示,在△ABC中,AB=5cm,AC=13cm,BC邊上的中
2025-04-04 03:30
【總結】探究與猜想通過觀察,你得到直角三角形三邊有什么關系?為什么?.,,,1222cbacba??那么斜邊長為別為角邊長分如果直角三角形的兩直命題黃實朱實朱實朱實朱實ba22:ba?它們的面積和acab.,,,1222cbacba??那么斜邊長為別為
2024-11-21 23:19