freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學(xué)易錯(cuò)題專題訓(xùn)練-平行四邊形練習(xí)題及答案(編輯修改稿)

2025-04-01 22:02 本頁面
 

【文章內(nèi)容簡介】 PH=PB.∵AB=BC,∠ABM=∠BCN,BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠APN=∠BAM+∠ABP=∠CBN+∠ABN=60176。,∴∠APB=120176。,∵∠AKB=60176。,∴∠AKB+∠APB=180176。,∴A、K、B、P四點(diǎn)共圓,∴∠BPH=∠KAB=60176。,∵PH=PB,∴△PBH是等邊三角形,∴∠KBA=∠HBP,BH=BP,∴∠KBH=∠ABP,∵BK=BA,∴△KBH≌△ABP,∴HK=AP,∴PA+PB=KH+PH=PK,∴PK的值最大時(shí),△APB的周長最大,∴當(dāng)PK是△ABK外接圓的直徑時(shí),PK的值最大,最大值為4,∴△PAB的周長最大值=2+4.6.在矩形紙片ABCD中,AB=6,BC=8,現(xiàn)將紙片折疊,使點(diǎn)D與點(diǎn)B重合,折痕為EF,連接DF.(1)說明△BEF是等腰三角形;(2)求折痕EF的長.【答案】(1)見解析;(2).【解析】【分析】(1)根據(jù)折疊得出∠DEF=∠BEF,根據(jù)矩形的性質(zhì)得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;(2)過E作EM⊥BC于M,則四邊形ABME是矩形,根據(jù)矩形的性質(zhì)得出EM=AB=6,AE=BM,根據(jù)折疊得出DE=BE,根據(jù)勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.【詳解】(1)∵現(xiàn)將紙片折疊,使點(diǎn)D與點(diǎn)B重合,折痕為EF,∴∠DEF=∠BEF.∵四邊形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形;(2)過E作EM⊥BC于M,則四邊形ABME是矩形,所以EM=AB=6,AE=BM.∵現(xiàn)將紙片折疊,使點(diǎn)D與點(diǎn)B重合,折痕為EF,∴DE=BE,DO=BO,BD⊥EF.∵四邊形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90176。.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.在Rt△EMF中,由勾股定理得:EF==.故答案為:.【點(diǎn)睛】本題考查了折疊的性質(zhì)和矩形性質(zhì)、勾股定理等知識(shí)點(diǎn),能熟記折疊的性質(zhì)是解答此題的關(guān)鍵.7.如圖1,矩形ABCD中,AB=8,AD=6;點(diǎn)E是對(duì)角線BD上一動(dòng)點(diǎn),連接CE,作EF⊥CE交AB邊于點(diǎn)F,以CE和EF為鄰邊作矩形CEFG,作其對(duì)角線相交于點(diǎn)H.(1)①如圖2,當(dāng)點(diǎn)F與點(diǎn)B重合時(shí),CE=  ,CG= ??;②如圖3,當(dāng)點(diǎn)E是BD中點(diǎn)時(shí),CE=  ,CG= ??; (2)在圖1,連接BG,當(dāng)矩形CEFG隨著點(diǎn)E的運(yùn)動(dòng)而變化時(shí),猜想△EBG的形狀?并加以證明; (3)在圖1,的值是否會(huì)發(fā)生改變?若不變,求出它的值;若改變,說明理由; (4)在圖1,設(shè)DE的長為x,矩形CEFG的面積為S,試求S關(guān)于x的函數(shù)關(guān)系式,并直接寫出x的取值范圍.【答案】(1), ,5, ;(2)△EBG是直角三角形,理由詳見解析;(3) ;(4)S=x2﹣x+48(0≤x≤).【解析】【分析】(1)①利用面積法求出CE,再利用勾股定理求出EF即可;②利用直角三角形斜邊中線定理求出CE,再利用相似三角形的性質(zhì)求出EF即可;(2)根據(jù)直角三角形的判定方法:如果一個(gè)三角形一邊上的中線等于這條邊的一半,則這個(gè)三角形是直角三角形即可判斷;(3)只要證明△DCE∽△BCG,即可解決問題;(4)利用相似多邊形的性質(zhì)構(gòu)建函數(shù)關(guān)系式即可;【詳解】(1)①如圖2中,在Rt△BAD中,BD==10,∵S△BCD=?CD?BC=?BD?CE,∴CE=.CG=BE=.②如圖3中,過點(diǎn)E作MN⊥AM交AB于N,交CD于M.∵DE=BE,∴CE=BD=5,∵△CME∽△ENF,∴,∴CG=EF=,(2)結(jié)論:△EBG是直角三角形.理由:如圖1中,連接BH.在Rt△BCF中,∵FH=CH,∴BH=FH=CH,∵四邊形EFGC是矩形,∴EH=HG=HF=HC,∴BH=EH=HG,∴△EBG是直角三角形.(3)F如圖1中,∵HE=HC=HG=HB=HF,∴C、E、F、B、G五點(diǎn)共圓,∵EF=CG,∴∠CBG=∠EBF,∵CD∥AB,∴∠EBF=∠CDE,∴∠CBG=∠CDE,∵∠DCB=∠ECG=90176。,∴∠DCE=∠BCG,∴△DCE∽△BCG,∴.(4)由(3)可知:,∴矩形CEFG∽矩形ABCD,∴,∵CE2=(x)2+)2,S矩形ABCD=48,∴S矩形CEFG= [(x)2+()2].∴矩形CEFG的面積S=x2x+48(0≤x≤).【點(diǎn)睛】本題考查相似三角形綜合題、矩形的性質(zhì)、相似三角形的判定和性質(zhì)、勾股定理、直角三角形的判定和性質(zhì)、相似多邊形的性質(zhì)和判定等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,學(xué)會(huì)添加常用輔助線,構(gòu)造相似三角形或直角三角形解決問題,屬于中考?jí)狠S題.8.如圖,在矩形ABCD中,點(diǎn)E在邊CD上,將該矩形沿AE折疊,使點(diǎn)D落在邊BC上的點(diǎn)F處,過點(diǎn)F作FG∥CD,交AE于點(diǎn)G,連接DG.(1)求證:四邊形DEFG為菱形;(2)若CD=8,CF=4,求的值.【答案】(1)證明見試題解析;(2).【解析】試題分析:(1)由折疊的性質(zhì),可以得到DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,再證明 FG=FE,即可得到四邊形DEFG為菱形;(2)在Rt△EFC中,用勾股定理列方程即可CD、CE,從而求出的值.試題解析:(1)由折疊的性質(zhì)可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,∴FG=FE,∴DG=GF=EF=DE,∴四邊形DEFG為菱形;(2)設(shè)DE=x,根據(jù)折疊的性質(zhì),EF=DE=x,EC=8﹣x,在Rt△EFC中,即,解得:x=5,CE=8﹣x=3,∴=.考點(diǎn):1.翻折變換(折疊問題);2.勾股定理;3.菱形的判定與性質(zhì);4.矩形的性質(zhì);5.綜合題.9.如圖,在平面直角坐標(biāo)系xOy中,四邊形OABC的頂點(diǎn)A在x軸的正半軸上,OA=4,OC=2,點(diǎn)D、E、F、G分別為邊OA、AB、BC、CO的中點(diǎn),連結(jié)DE、EF、FG、GD.(1)若點(diǎn)C在y軸的正半軸上,當(dāng)點(diǎn)B的坐標(biāo)為(2,4)時(shí),判斷四邊形DEFG的形狀,并說明理由.(2)若點(diǎn)C在第二象限運(yùn)動(dòng),且四邊形DEFG為菱形時(shí),求點(diǎn)四邊形OABC對(duì)角線OB長度的取值范圍.(3)若在點(diǎn)C的運(yùn)動(dòng)過程中,四邊形DEFG始終為正方形,當(dāng)點(diǎn)C從X軸負(fù)半軸經(jīng)過Y軸正半軸,運(yùn)動(dòng)至X軸正半軸時(shí),直接寫出點(diǎn)B的運(yùn)動(dòng)路徑長.【答案】(1)正方形(2)(3)2π【解析】分析:(1)連接OB,AC,說明OB⊥AC,OB=AC,可得四邊形DEFG是正方形.(2)由四邊形DEFG是菱形,可得OB=AC,當(dāng)點(diǎn)C在y軸上時(shí),AC=,當(dāng)點(diǎn)C在x軸上時(shí),AC=6, 故可得結(jié)論;(3)根據(jù)題意計(jì)算弧長即可.詳解:(1)正方形,如圖1,證明連接OB,AC,說明OB⊥AC,OB=AC,可得四邊形DEFG是正方形.(2)如圖2,由四邊形DEFG是菱形,可得OB=AC,當(dāng)點(diǎn)C在y軸上時(shí),AC=,當(dāng)點(diǎn)C在x軸上時(shí),AC=6, ∴ ;(3)2π.如圖3,當(dāng)四邊形DEFG是正方形時(shí),OB⊥AC,且OB=AC,構(gòu)造△OBE≌△ACO,可得B點(diǎn)在以E(0,4)為圓心,2為半徑的圓上運(yùn)動(dòng).所以當(dāng)C點(diǎn)從x軸負(fù)半軸到正半軸運(yùn)動(dòng)時(shí),B點(diǎn)的運(yùn)動(dòng)路徑為2 .圖1 圖2 圖3點(diǎn)睛:本題主要考查了正方形的判定,.10.已知邊長為1的正方形ABCD中, P是對(duì)角線AC上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、C不重合),過點(diǎn)P作PE⊥PB ,PE交射線DC于點(diǎn)E,過點(diǎn)E作EF⊥AC,垂足為點(diǎn)F.(1)當(dāng)點(diǎn)E落在線段CD上時(shí)(如圖),①求證:PB=PE;②在點(diǎn)P的運(yùn)動(dòng)過程中,PF的長度是否發(fā)生變化?若不變,試求出這個(gè)不變的值,若變化,試說明理由;(2)當(dāng)點(diǎn)E落在線段DC的延長線上時(shí),在備用圖上畫出符合要求的大致圖形,并判斷上述(1)中的結(jié)論是否仍然成立(只需寫出結(jié)論,不需要
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1