freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx歷年中考數(shù)學(xué)易錯(cuò)題匯編-平行四邊形練習(xí)題含答案解析(編輯修改稿)

2025-03-30 22:24 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 利用直角三角形斜邊中線的性質(zhì),只要證明BC=CP即可.【詳解】(1)證明:如圖1中,在正方形ABCD中,AB=AD,∠BAD=∠D=90o,∴∠2+∠3=90176。又∵BF⊥AE,∴∠AGB=90176?!唷?+∠2=90176。,∴∠1=∠3在△BAF與△ADE中,∠1=∠3 BA=AD ∠BAF=∠D,∴△BAF≌△ADE(ASA)∴AF=DE.(2)證明:過(guò)點(diǎn)D作DM⊥GF,DN⊥GE,垂足分別為點(diǎn)M,N.由(1)得∠1=∠3,∠BGA=∠AND=90176。,AB=AD∴△BAG≌△ADN(AAS)∴AG=DN, 又DG平分∠EGF,DM⊥GF,DN⊥GE,∴DM=DN,∴DM=AG,又∠AFG=∠DFM,∠AGF=∠DMF∴△AFG≌△DFM(AAS),∴AF=DF=DE=AD=CD,即點(diǎn)E是CD的中點(diǎn).(3)延長(zhǎng)AE,BC交于點(diǎn)P,由(2)知DE=CD,∠ADE=∠ECP=90176。,∠DEA=∠CEP,∴△ADE≌△PCE(ASA)∴AE=PE,又CE∥AB,∴BC=PC,在Rt△BGP中,∵BC=PC,∴CG=BP=BC,∴CG=CD.【點(diǎn)睛】本題屬于四邊形綜合題,考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),角平分線的性質(zhì)定理,直角三角形斜邊中線的性質(zhì)等知識(shí),解題的關(guān)鍵是正確尋找全等三角形解決問(wèn)題,屬于中考?jí)狠S題.8.如圖,在菱形ABCD中,AB=4,∠BAD=120176。,△AEF為正三角形,E、F在菱形的邊BC,CD上.(1)證明:BE=CF.(2)當(dāng)點(diǎn)E,F(xiàn)分別在邊BC,CD上移動(dòng)時(shí)(△AEF保持為正三角形),請(qǐng)?zhí)骄克倪呅蜛ECF的面積是否發(fā)生變化?若不變,求出這個(gè)定值;如果變化,求出其最大值.(3)在(2)的情況下,請(qǐng)?zhí)骄俊鰿EF的面積是否發(fā)生變化?若不變,求出這個(gè)定值;如果變化,求出其最大值.【答案】(1)見(jiàn)解析;(2);(3)見(jiàn)解析【解析】試題分析:(1)先求證AB=AC,進(jìn)而求證△ABC、△ACD為等邊三角形,得∠4=60176。,AC=AB進(jìn)而求證△ABE≌△ACF,即可求得BE=CF;(2)根據(jù)△ABE≌△ACF可得S△ABE=S△ACF,故根據(jù)S四邊形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解題;(3)當(dāng)正三角形AEF的邊AE與BC垂直時(shí),邊AE最短.△AEF的面積會(huì)隨著AE的變化而變化,且當(dāng)AE最短時(shí),正三角形AEF的面積會(huì)最小,又根據(jù)S△CEF=S四邊形AECFS△AEF,則△CEF的面積就會(huì)最大.試題解析:(1)證明:連接AC,∵∠1+∠2=60176。,∠3+∠2=60176。,∴∠1=∠3,∵∠BAD=120176。,∴∠ABC=∠ADC=60176。∵四邊形ABCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD為等邊三角形∴∠4=60176。,AC=AB,∴在△ABE和△ACF中,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,則S△ABE=S△ACF.故S四邊形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值.作AH⊥BC于H點(diǎn),則BH=2,S四邊形AECF=S△ABC===;(3)解:由“垂線段最短”可知,當(dāng)正三角形AEF的邊AE與BC垂直時(shí),邊AE最短.故△AEF的面積會(huì)隨著AE的變化而變化,且當(dāng)AE最短時(shí),正三角形AEF的面積會(huì)最小,又S△CEF=S四邊形AECF﹣S△AEF,則△CEF的面積就會(huì)最大.由(2)得,S△CEF=S四邊形AECF﹣S△AEF=﹣=.點(diǎn)睛:本題考查了菱形每一條對(duì)角線平分一組對(duì)角的性質(zhì),考查了全等三角形的證明和全等三角形對(duì)應(yīng)邊相等的性質(zhì),考查了三角形面積的計(jì)算,本題中求證△ABE≌△ACF是解題的關(guān)鍵.9.已知AD是△ABC的中線P是線段AD上的一點(diǎn)(不與點(diǎn)A、D重合),連接PB、PC,E、F、G、H分別是AB、AC、PB、PC的中點(diǎn),AD與EF交于點(diǎn)M;(1)如圖1,當(dāng)AB=AC時(shí),求證:四邊形EGHF是矩形;(2)如圖2,當(dāng)點(diǎn)P與點(diǎn)M重合時(shí),在不添加任何輔助線的條件下,寫出所有與△BPE面積相等的三角形(不包括△BPE本身).【答案】(1)見(jiàn)解析;(2)△APE、△APF、△CPF、△PGH.【解析】【分析】(1)由三角形中位線定理得出EG∥AP,EF∥BC,EF=BC,GH∥BC,GH=BC,推出EF∥GH,EF=GH,證得四邊形EGHF是平行四邊形,證得EF⊥AP,推出EF⊥EG,即可得出結(jié)論;(2)由△APE與△BPE的底AE=BE,又等高,得出S△APE=S△BPE,由△APE與△APF的底EP=FP,又等高,得出S△APE=S△APF,由△APF與△CPF的底AF=CF,又等高,得出S△APF=S△CPF,證得△PGH底邊GH上的高等于△AEF底邊EF上高的一半,推出S△PGH=S△AEF=S△APF,即可得出結(jié)果.【詳解】(1)證明:∵E、F、G、H分別是AB、AC、PB、PC的中點(diǎn),∴EG∥AP,EF∥BC,EF=BC,GH∥BC,GH=BC,∴EF∥GH,EF=GH,∴四邊形EGHF是平行四邊形,∵AB=AC,∴AD⊥BC,∴EF⊥AP,∵EG∥AP,∴EF⊥EG,∴平行四邊形EGHF是矩形;(2)∵PE是△APB的中線,∴△APE與△BPE的底AE=BE,又等高,∴S△APE=S△BPE,∵AP是△AEF的中線,∴△APE與△APF的底EP=FP,又等高,∴S△APE=S△APF,∴S△APF=S△BPE,∵PF是△APC的中線,∴△APF與△CPF的底AF=CF,又等高,∴S△APF=S△CPF,∴S△CPF=S△BPE,∵EF∥GH∥BC,E、F、G、H分別是AB、AC、PB、PC的中點(diǎn),∴△AEF底邊EF上的高等于△ABC底邊BC上高的一半,△PGH底邊GH上的高等于△PBC底邊BC上高的一半,∴△PGH底邊GH上的高等于△AEF底邊EF上高的一半,∵GH=EF,∴S△PGH=S△AEF=S△APF,綜上所述,與△BPE面積相等的三角形為:△APE、△APF、△CPF、△PGH.【點(diǎn)睛】本題考查了矩形的判定與性質(zhì)、平行四邊形的判定、三角形中位線定理、平行線的性質(zhì)、三角形面積的計(jì)算等知識(shí),熟練掌握三角形中位線定理是解決問(wèn)題的關(guān)鍵.10.如圖1,在△ABC中,AB=AC,AD⊥BC于D,分別延長(zhǎng)AC至E,BC至F,且CE=EF,延長(zhǎng)FE交AD的延長(zhǎng)線于G.(1)求證:AE=EG;(2)如圖2,分別連接BG,BE,若BG=BF,求證:BE=EG;(3)如圖3,取GF的中點(diǎn)M,若AB=5,求EM的長(zhǎng).【答案】(1)證明見(jiàn)解析(2)證明見(jiàn)解析(3)【解析】【分析】(1)根據(jù)平行線的性質(zhì)和等腰三角形的三線合一的性質(zhì)得:∠CAD=∠G,可得AE=EG;(2)作輔助線,證明△BEF≌△GEC(SAS),可得結(jié)論;(3)如圖3,作輔助線,構(gòu)建平行線,證明四邊形DMEN是平行四邊形,得EM=DN=AC,計(jì)算可得結(jié)論.【詳解】證明:(1)如圖1,過(guò)E作EH⊥CF于H,∵AD⊥BC,∴EH∥AD,∴∠CEH=∠CAD,∠HEF=∠G,∵CE=EF,∴∠CEH=∠HEF
點(diǎn)擊復(fù)制文檔內(nèi)容
黨政相關(guān)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1