freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)易錯(cuò)題專題訓(xùn)練-平行四邊形練習(xí)題附詳細(xì)答案(編輯修改稿)

2025-04-01 22:03 本頁面
 

【文章內(nèi)容簡介】 展】分兩種情況,利用結(jié)論,求得點(diǎn)P到x軸的距離,再利用待定系數(shù)法可求出P的坐標(biāo).【詳解】變式探究:連接AP,如圖3: ∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,∴AB?CF=AC?PE﹣ AB?PD.∵AB=AC,∴CF=PD﹣PE;結(jié)論運(yùn)用:過點(diǎn)E作EQ⊥BC,垂足為Q,如圖④,∵四邊形ABCD是長方形,∴AD=BC,∠C=∠ADC=90176。.∵AD=16,CF=6,∴BF=BC﹣CF=AD﹣CF=5,由折疊可得:DF=BF,∠BEF=∠DEF.∴DF=5.∵∠C=90176。,∴DC==8.∵EQ⊥BC,∠C=∠ADC=90176。,∴∠EQC=90176。=∠C=∠ADC.∴四邊形EQCD是長方形.∴EQ=DC=4.∵AD∥BC,∴∠DEF=∠EFB.∵∠BEF=∠DEF,∴∠BEF=∠EFB.∴BE=BF,由問題情境中的結(jié)論可得:PG+PH=EQ.∴PG+PH=8.∴PG+PH的值為8;遷移拓展:如圖,由題意得:A(0,8),B(6,0),C(﹣4,0)∴AB==10,BC=10.∴AB=BC,(1)由結(jié)論得:P1D1+P1E1=OA=8∵P1D1=1=2,∴P1E1=6 即點(diǎn)P1的縱坐標(biāo)為6又點(diǎn)P1在直線l2上,∴y=2x+8=6,∴x=﹣1,即點(diǎn)P1的坐標(biāo)為(﹣1,6);(2)由結(jié)論得:P2E2﹣P2D2=OA=8∵P2D2=2,∴P2E2=10 即點(diǎn)P1的縱坐標(biāo)為10又點(diǎn)P1在直線l2上,∴y=2x+8=10,∴x=1,即點(diǎn)P1的坐標(biāo)為(1,10)【點(diǎn)睛】本題考查了矩形的性質(zhì)與判定、等腰三角形的性質(zhì)與判定及勾股定理等知識點(diǎn),利用面積法列出等式是解決問題的關(guān)鍵.8.已知,點(diǎn)是的角平分線上的任意一點(diǎn),現(xiàn)有一個(gè)直角繞點(diǎn)旋轉(zhuǎn),兩直角邊,分別與直線,相交于點(diǎn),點(diǎn).(1)如圖1,若,猜想線段,之間的數(shù)量關(guān)系,并說明理由.(2)如圖2,若點(diǎn)在射線上,且與不垂直,則(1)中的數(shù)量關(guān)系是否仍成立?如成立,請說明理由;如不成立,請寫出線段,之間的數(shù)量關(guān)系,并加以證明.(3)如圖3,若點(diǎn)在射線的反向延長線上,且,請直接寫出線段的長度.【答案】(1)詳見解析;(2)詳見解析;(3)【解析】【分析】(1)先證四邊形為矩形,再證矩形為正方形,由正方形性質(zhì)可得;(2)過點(diǎn)作于點(diǎn),于點(diǎn),證四邊形為正方形,再證,可得;(3)根據(jù),可得.【詳解】解:(1)∵,,∴四邊形為矩形.∵是的角平分線,∴,∴,∴矩形為正方形,∴,.∴.(2)如圖,過點(diǎn)作于點(diǎn),于點(diǎn),∵平分,∴四邊形為正方形,由(1)得:,在和中,∴,∴,∴.(3),∴.∵,∴,∴,∴,的長度為.【點(diǎn)睛】考核知識點(diǎn):矩形,.9.正方形ABCD,點(diǎn)E在邊BC上,點(diǎn)F在對角線AC上,連AE.(1)如圖1,連EF,若EF⊥AC,4AF=3AC,AB=4,求△AEF的周長;(2)如圖2,若AF=AB,過點(diǎn)F作FG⊥AC交CD于G,點(diǎn)H在線段FG上(不與端點(diǎn)重合),連AH.若∠EAH=45176。,求證:EC=HG+FC.【答案】(1);(2)證明見解析【解析】【分析】(1)由正方形性質(zhì)得出AB=BC=CD=AD=4,∠B=∠D=90176。,∠ACB=∠ACD=∠BAC=∠ACD=45176。,得出AC=AB=4,求出AF=3,CF=AC﹣AF=,求出△CEF是等腰直角三角形,得出EF=CF=,CE=CF=2,在Rt△AEF中,由勾股定理求出AE,即可得出△AEF的周長;(2)延長GF交BC于M,連接AG,則△CGM和△CFG是等腰直角三角形,得出CM=CG,CG=CF,證出BM=DG,證明Rt△AFG≌Rt△ADG得出FG=DG,BM=FG,再證明△ABE≌△AFH,得出BE=FH,即可得出結(jié)論.【詳解】(1)∵四邊形ABCD是正方形,∴AB=BC=CD=AD=4,∠B=∠D=90176。,∠ACB=∠ACD=∠BAC=∠ACD=45176。,∴AC=AB=4,∵4AF=3AC=12,∴AF=3,∴CF=AC﹣AF=,∵EF⊥AC,∴△CEF是等腰直角三角形,∴EF=CF=,CE=CF=2,在Rt△AEF中,由勾股定理得:AE=,∴△AEF的周長=AE+EF+AF=;(2)證明:延長GF交BC于M,連接AG,如圖2所示:則△CGM和△CFG是等腰直角三角形,∴CM=CG,CG=CF,∴BM=DG,∵AF=AB,∴AF=AD,在Rt△AFG和Rt△ADG中,∴Rt△AFG≌Rt△ADG(HL),∴FG=DG,∴BM=FG,∵∠BAC=∠EAH=45176。,∴∠BAE=∠FAH,∵FG⊥AC,∴∠AFH=90176。,在△ABE和△AFH中,∴△ABE≌△AFH(ASA),∴BE=FH,∵BM=BE+EM,F(xiàn)G=FH+HG,∴EM=HG,∵EC=EM+CM,CM=CG=CF,∴EC=HG+FC.【點(diǎn)睛】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì)、勾股定理等知識;熟練掌握等腰直角三角形的判定與性質(zhì),證明三角形全等是解題的關(guān)鍵.10.在中,BD為AC邊上的中線,過點(diǎn)C作于點(diǎn)E,過點(diǎn)A作BD的平行線,交CE的延長線于點(diǎn)F,在AF的延長線上截取,連接BG,DF.求證:;求證:四邊形BDFG為菱形;若,求四邊形BDFG的周長.【答案】(1)證明見解析(2)證明見解析(3)8【解析】【分析】利用平行線的性質(zhì)得到,再利用直角三角形斜邊上的中線等于斜邊的一半即可得證,利用平行四邊形的判定定理判定四邊形BDFG為平行四邊形,再利用得結(jié)論即可得證,設(shè),則,利用菱形的性質(zhì)和勾股定理得到CF、AF和AC之間的關(guān)系,解出x即可.【詳解】證明:,,又為AC的中點(diǎn),又,證明:,四邊形BDFG為平行四邊形,又,四邊形BDFG為菱形,解:設(shè),則,在中,解得:,舍去,菱形BDFG的周長為8.【點(diǎn)睛】本題考查了菱形的判定與性質(zhì)直角三角
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1