freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)復(fù)習(xí)平行四邊形專項易錯題及詳細(xì)答案(編輯修改稿)

2025-04-01 22:03 本頁面
 

【文章內(nèi)容簡介】 】延長BF,交DA的延長線于點M,連接BD,進(jìn)而求證△AFM≌△EFB,得AM=BE,F(xiàn)B=FM,即可求得BC+BE=AD+AM,進(jìn)而求得BD=BM,根據(jù)等腰三角形三線合一的性質(zhì)即可求證BF⊥DF.【詳解】延長BF,交DA的延長線于點M,連接BD.∵四邊形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,∠E=∠MAF,又FA=FE,∴△AFM≌△EFB,∴AM=BE,F(xiàn)B=FM.∵矩形ABCD中,∴AC=BD,AD=BC,∴BC+BE=AD+AM,即CE=MD.∵CE=AC,∴AC=CE= BD =DM.∵FB=FM,∴BF⊥DF.【點睛】本題考查了矩形的性質(zhì),全等三角形的判定和對應(yīng)邊相等的性質(zhì),等腰三角形三線合一的性質(zhì),本題中求證DB=DM是解題的關(guān)鍵.8.閱讀下列材料:我們定義:若一個四邊形的一條對角線把四邊形分成兩個等腰三角形,則這條對角線叫這個四邊形的和諧線,這個四邊形叫做和諧四邊形.如正方形就是和諧四邊形.結(jié)合閱讀材料,完成下列問題:(1)下列哪個四邊形一定是和諧四邊形  ?。瓵.平行四邊形 B.矩形 C.菱形 D.等腰梯形(2)命題:“和諧四邊形一定是軸對稱圖形”是    命題(填“真”或“假”).(3)如圖,等腰Rt△ABD中,∠BAD=90176。.若點C為平面上一點,AC為凸四邊形ABCD的和諧線,且AB=BC,請求出∠ABC的度數(shù).【答案】(1) C ;(2)∠ABC的度數(shù)為60176。或90176?;?50176。.【解析】試題分析:(1)根據(jù)菱形的性質(zhì)和和諧四邊形定義,直接得出結(jié)論.(2)根據(jù)和諧四邊形定義,分AD=CD,AD=AC,AC=DC討論即可.(1)根據(jù)和諧四邊形定義,平行四邊形,矩形,等腰梯形的對角線不能把四邊形分成兩個等腰三角形,菱形的一條對角線能把四邊形分成兩個等腰三角形夠.故選C.(2)∵等腰Rt△ABD中,∠BAD=90176。,∴AB=AD.∵AC為凸四邊形ABCD的和諧線,且AB=BC,∴分三種情況討論:若AD=CD,如圖1,則凸四邊形ABCD是正方形,∠ABC=90176。;若AD=AC,如圖 2,則AB=AC=BC,△ABC是等邊三角形,∠ABC=60176。;若AC=DC,如圖 3,則可求∠ABC=150176。.考點:;2.菱形的性質(zhì);3.正方形的判定和性質(zhì);4.等邊三角形的判定和性質(zhì);.9.如圖①,在矩形中,點從邊的中點出發(fā),沿著速運動,速度為每秒2個單位長度,到達(dá)點后停止運動,點是上的點,設(shè)的面積為,點運動的時間為秒,與的函數(shù)關(guān)系如圖②所示.(1)圖①中= ,= ,圖②中= .(2)當(dāng)=1秒時,試判斷以為直徑的圓是否與邊相切?請說明理由:(3)點在運動過程中,將矩形沿所在直線折疊,則為何值時,折疊后頂點的對應(yīng)點落在矩形的一邊上.【答案】(1)8,18,20。(2)不相切,證明見解析;(3)t=、.【解析】【分析】(1)由題意得出AB=2BE,t=2時,BE=22=4,求出AB=2BE=8,AE=BE=4,t=11時,2t=22,得出BC=18,當(dāng)t=0時,點P在E處,m=△AEQ的面積=AQAE=20即可;(2)當(dāng)t=1時,PE=2,得出AP=AE+PE=6,由勾股定理求出PQ=2,設(shè)以PQ為直徑的圓的圓心為O39。,作O39。N⊥BC于N,延長NO39。交AD于M,則MN=AB=8,O39。M∥AB,MN=AB=8,由三角形中位線定理得出O39。M=AP=3,求出O39。N=MNO39。M=5<圓O39。的半徑,即可得出結(jié)論;(3)分三種情況:①當(dāng)點P在AB邊上,A39。落在BC邊上時,作QF⊥BC于F,則QF=AB=8,BF=AQ=10,由折疊的性質(zhì)得:PA39。=PA,A39。Q=AQ=10,∠PA39。Q=∠A=90176。,由勾股定理求出A39。F==6,得出A39。B=BFA39。F=4,在Rt△A39。BP中,BP=42t,PA39。=AP=8(42t)=4+2t,由勾股定理得出方程,解方程即可;②當(dāng)點P在BC邊上,A39。落在BC邊上時,由折疊的性質(zhì)得:A39。P=AP,證出∠APQ=∠AQP,得出AP=AQ=A39。P=10,在Rt△ABP中,由勾股定理求出BP=6,由BP=2t4,得出2t4=6,解方程即可;③當(dāng)點P在BC邊上,A39。落在CD邊上時,由折疊的性質(zhì)得:A39。P=AP,A39。Q=AQ=10,在Rt△DQA39。中,DQ=ADAQ=8,由勾股定理求出DA39。=6,得出A39。C=CDDA39。=2,在Rt△ABP和Rt△A39。PC中,BP=2t4,CP=BCBP=222t,由勾股定理得出方程,解方程即可.【詳解】(1)∵點P從AB邊的中點E出發(fā),速度為每秒2個單位長度,∴AB=2BE,由圖象得:t=2時,BE=22=4,∴AB=2BE=8,AE=BE=4,t=11時,2t=22,∴BC=224=18,當(dāng)t=0時,點P在E處,m=△AEQ的面積=AQAE=104=20;故答案為8,18,20;(2)當(dāng)t=1秒時,以PQ為直徑的圓不與BC邊相切,理由如下: 當(dāng)t=1時,PE=2,∴AP=AE+PE=4+2=6,∵四邊形ABCD是矩形,∴∠A=90176。,∴PQ=,設(shè)以PQ為直徑的圓的圓心為O39。,作O39。N⊥BC于N,延長NO39。交AD于M,如圖1所示:則MN=AB=8,O39。M∥AB,MN=AB=8,∵O39。為PQ的中點, ∴O39。39。M是△APQ的中位線,∴O39。M=AP=3,∴O39。N=MNO39。M=5<,∴以PQ為直徑的圓不與BC邊相切;(3)分三種情況:①當(dāng)點P在AB邊上,A39。落在BC邊上時,作QF⊥BC于F,如圖2所示:則QF=AB=8,BF=AQ=10,∵四邊形ABCD是矩形,∴
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1