freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx長沙歷年備戰(zhàn)中考數(shù)學(xué)易錯題匯編-平行四邊形練習(xí)題(編輯修改稿)

2025-03-30 22:32 本頁面
 

【文章內(nèi)容簡介】 的中點N,連接DN,由(1)得AE=EG,∴∠GAE=∠AGE,在Rt△ACD中,N為AC的中點,∴DN=AC=AN,∠DAN=∠ADN,∴∠ADN=∠AGE,∴DN∥GF,在Rt△GDF中,M是FG的中點,∴DM=FG=GM,∠GDM=∠AGE,∴∠GDM=∠DAN,∴DM∥AE,∴四邊形DMEN是平行四邊形,∴EM=DN=AC,∵AC=AB=5,∴EM=.【點睛】本題是三角形的綜合題,主要考查了全等三角形的判定與性質(zhì),直角三角形斜邊中線的性質(zhì),等腰三角形的性質(zhì)和判定,平行四邊形的性質(zhì)和判定等知識,解題的關(guān)鍵是作輔助線,并熟練掌握全等三角形的判定方法,特別是第三問,輔助線的作法是關(guān)鍵.7.已知,點是的角平分線上的任意一點,現(xiàn)有一個直角繞點旋轉(zhuǎn),兩直角邊,分別與直線,相交于點,點.(1)如圖1,若,猜想線段,之間的數(shù)量關(guān)系,并說明理由.(2)如圖2,若點在射線上,且與不垂直,則(1)中的數(shù)量關(guān)系是否仍成立?如成立,請說明理由;如不成立,請寫出線段,之間的數(shù)量關(guān)系,并加以證明.(3)如圖3,若點在射線的反向延長線上,且,請直接寫出線段的長度.【答案】(1)詳見解析;(2)詳見解析;(3)【解析】【分析】(1)先證四邊形為矩形,再證矩形為正方形,由正方形性質(zhì)可得;(2)過點作于點,于點,證四邊形為正方形,再證,可得;(3)根據(jù),可得.【詳解】解:(1)∵,,∴四邊形為矩形.∵是的角平分線,∴,∴,∴矩形為正方形,∴,.∴.(2)如圖,過點作于點,于點,∵平分,∴四邊形為正方形,由(1)得:,在和中,∴,∴,∴.(3),∴.∵,∴,∴,∴,的長度為.【點睛】考核知識點:矩形,.8.△ABC為等邊三角形,..(1)求證:四邊形是菱形.(2)若是的角平分線,連接,找出圖中所有的等腰三角形.【答案】(1)證明見解析;(2)圖中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.【解析】【分析】(1)先求證BD∥AF,證明四邊形ABDF是平行四邊形,再利用有一組鄰邊相等的平行四邊形是菱形即可證明;(2)先利用BD平分∠ABC,得到BD垂直平分線段AC,進而證明△DAC是等腰三角形,根據(jù)BD⊥AC,AF⊥AC,找到角度之間的關(guān)系,證明△DAE是等腰三角形,進而得到BC=BD=BA=AF=DF,即可解題,見詳解.【詳解】(1)如圖1中,∵∠BCD=∠BDC,∴BC=BD,∵△ABC是等邊三角形,∴AB=BC,∵AB=AF,∴BD=AF,∵∠BDC=∠AEC,∴BD∥AF,∴四邊形ABDF是平行四邊形,∵AB=AF,∴四邊形ABDF是菱形.(2)解:如圖2中,∵BA=BC,BD平分∠ABC,∴BD垂直平分線段AC,∴DA=DC,∴△DAC是等腰三角形,∵AF∥BD,BD⊥AC∴AF⊥AC,∴∠EAC=90176。,∵∠DAC=∠DCA,∠DAC+∠DAE=90176。,∠DCA+∠AEC=90176。,∴∠DAE=∠DEA,∴DA=DE,∴△DAE是等腰三角形,∵BC=BD=BA=AF=DF,∴△BCD,△ABD,△ADF都是等腰三角形,綜上所述,圖中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.【點睛】本題考查菱形的判定,等邊三角形的性質(zhì),等腰三角形的判定等知識,屬于中考??碱}型,熟練掌握等腰三角形的性質(zhì)是解題的關(guān)鍵.9.在中,BD為AC邊上的中線,過點C作于點E,過點A作BD的平行線,交CE的延長線于點F,在AF的延長線上截取,連接BG,DF.求證:;求證:四邊形BDFG為菱形;若,求四邊形BDFG的周長.【答案】(1)證明見解析(2)證明見解析(3)8【解析】【分析】利用平行線的性質(zhì)得到,再利用直角三角形斜邊上的中線等于斜邊的一半即可得證,利用平行四邊形的判定定理判定四邊形BDFG為平行四邊形,再利用得結(jié)論即可得證,設(shè),則,利用菱形的性質(zhì)和勾股定理得到CF、AF和AC之間的關(guān)系,解出x即可.【詳解】證明:,,又為AC的中點,又,證明:,四邊形BDFG為平行四邊形,又,四邊形BDFG為菱形,解:設(shè),則,在中,解得:,舍去,菱形BDFG的周長為8.【點睛】本題考查了菱形的判定與性質(zhì)直角三角形斜邊上的中線,勾股定理等知識,正確掌握這些定義性質(zhì)及判定并結(jié)合圖形作答是解決本題的關(guān)鍵.10.問題情境在四邊形ABCD中,BA=BC,DC⊥AC,過點D作DE∥AB交BC的延長線于點E,M是邊AD的中點,連接MB,ME. 特例探究(1)如圖1,當∠ABC=90176。時,寫出線段MB與ME的數(shù)量關(guān)系,位置關(guān)系; (2)如圖2,當∠ABC=120176。時,試探究線段MB與ME的數(shù)量關(guān)系,并證明你的結(jié)論; 拓展延伸(3)如圖3,當∠ABC=α?xí)r,請直接用含α的式子表示線段MB與ME之間的數(shù)量關(guān)系.【答案】(1)MB=ME,MB⊥ME;(2)ME=MB.證明見解析;(3)ME=MBtan.【解析】【分析】(1)如圖1中,連接CM.只要證明△MBE是等腰直角三角形即可;(2)結(jié)論:EM=MB.只要證明△EBM是直角三角形,且∠MEB=30176。即可;(3)結(jié)論:EM=BM?tan.證明方法類似;【詳解】(1) 如圖1中,連接CM.∵∠ACD=90176。,AM=MD,∴MC=MA=MD,∵BA=BC,∴BM垂直平分AC,∵∠ABC=90176。,BA=BC,∴∠MBE=∠ABC=45176。,∠ACB=∠DCE=45176。,∵AB∥DE,∴∠ABE+∠DEC=180176。,∴∠DEC=90176。,∴∠DCE=∠CDE=45176。,∴EC=ED,∵MC=MD,∴EM垂直平分線段CD,EM平分∠DEC,∴∠MEC=45176。,∴△BME是等腰直角三角形,∴BM=ME,BM⊥EM.故答案為BM=ME,BM⊥EM.(2)ME=MB.證明如下:連接CM,如解圖所示.∵DC⊥AC,M是邊AD的中點,∴MC=MA=MD.∵BA=BC,∴BM垂直平分AC.∵∠ABC=120176。,BA=BC,∴∠MBE=∠ABC=60176。,∠BAC=∠BCA=30176。,∠DCE=60176。.∵AB∥DE,∴∠ABE+∠DEC=180176。,∴∠DEC=60176。,∴∠DCE=∠DEC=60176。,∴△CDE是等邊三角形,∴EC=ED.∵MC=MD,∴EM垂直平分CD,EM平分∠DEC,∴∠MEC=∠DEC=30176。,∴∠MBE+∠MEB=90176。,即∠BME=90176。.在Rt△BME中,∵∠MEB=30176。,∴ME=MB.(3) 如圖3中,結(jié)論:EM=BM?tan.理由:同法可證:BM⊥EM,BM平分∠ABC,所以EM=BM?t
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1