freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學(xué)培優(yōu)專題復(fù)習(xí)平行四邊形練習(xí)題及答案解析(編輯修改稿)

2025-03-31 23:03 本頁面
 

【文章內(nèi)容簡介】 BCFD為平行四邊形;(2)若AB=6,求平行四邊形ADBC的面積.【答案】(1)見解析;(2)S平行四邊形ADBC=.【解析】【分析】(1)在Rt△ABC中,E為AB的中點,則CE=AB,BE=AB,得到∠BCE=∠EBC=60176。.由△AEF≌△BEC,得∠AFE=∠BCE=60176。.又∠D=60176。,得∠AFE=∠D=∥BD,又因為∠BAD=∠ABC=60176。,所以AD∥BC,即FD//BC,則四邊形BCFD是平行四邊形.(2)在Rt△ABC中,求出BC,AC即可解決問題;【詳解】解:(1)證明:在△ABC中,∠ACB=90176。,∠CAB=30176。,∴∠ABC=60176。,在等邊△ABD中,∠BAD=60176。,∴∠BAD=∠ABC=60176。,∵E為AB的中點,∴AE=BE,又∵∠AEF=∠BEC,∴△AEF≌△BEC,在△ABC中,∠ACB=90176。,E為AB的中點,∴CE=AB,BE=AB,∴CE=AE,∴∠EAC=∠ECA=30176。,∴∠BCE=∠EBC=60176。,又∵△AEF≌△BEC,∴∠AFE=∠BCE=60176。,又∵∠D=60176。,∴∠AFE=∠D=60176。,∴FC∥BD,又∵∠BAD=∠ABC=60176。,∴AD∥BC,即FD∥BC,∴四邊形BCFD是平行四邊形;(2)解:在Rt△ABC中,∵∠BAC=30176。,AB=6,∴BC=AF=3,AC=,∴S平行四邊形BCFD=3=,S△ACF=3=,S平行四邊形ADBC=.【點睛】本題考查平行四邊形的判定和性質(zhì)、直角三角形斜邊中線定理、等邊三角形的性質(zhì)、解直角三角形、勾股定理等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考??碱}型.8.如圖,在正方形ABCD中,E是邊AB上的一動點,點F在邊BC的延長線上,且,連接DE,DF,EF. FH平分交BD于點H.(1)求證:;(2)求證::(3)過點H作于點M,用等式表示線段AB,HM與EF之間的數(shù)量關(guān)系,并證明.【答案】(1)詳見解析;(2)詳見解析;(3),證明詳見解析.【解析】【分析】(1)根據(jù)正方形性質(zhì), 得到.(2)由,平分,,所以.(3)過點作于點,由正方形性質(zhì),,所以.由,得.【詳解】(1)證明:∵四邊形是正方形,∴,.∴.∵?!?∴.∴.∴.(2)證明:∵,∴.∵,∴.∵,平分,∴.∵平分,∴.∵,∴.∴.(3).證明:過點作于點,如圖,∵正方形中,,∴.∵平分,∴.∵,∴.∴.∵,∴.【點睛】本題考查正方形的性質(zhì)、勾股定理、角平分線的性質(zhì)、三角函數(shù),題目難度較大,解題的關(guān)鍵是熟練掌握正方形的性質(zhì)、勾股定理、角平分線的性質(zhì)、三角函數(shù).9.如圖所示,矩形ABCD中,點E在CB的延長線上,使CE=AC,連接AE,點F是AE的中點,連接BF、DF,求證:BF⊥DF.【答案】見解析.【解析】【分析】延長BF,交DA的延長線于點M,連接BD,進而求證△AFM≌△EFB,得AM=BE,F(xiàn)B=FM,即可求得BC+BE=AD+AM,進而求得BD=BM,根據(jù)等腰三角形三線合一的性質(zhì)即可求證BF⊥DF.【詳解】延長BF,交DA的延長線于點M,連接BD.∵四邊形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,∠E=∠MAF,又FA=FE,∴△AFM≌△EFB,∴AM=BE,F(xiàn)B=FM.∵矩形ABCD中,∴AC=BD,AD=BC,∴BC+BE=AD+AM,即CE=MD.∵CE=AC,∴AC=CE= BD =DM.∵FB=FM,∴BF⊥DF.【點睛】本題考查了矩形的性質(zhì),全等三角形的判定和對應(yīng)邊相等的性質(zhì),等腰三角形三線合一的性質(zhì),本題中求證DB=DM是解題的關(guān)鍵.10.如圖,在正方形ABCD中,對角線AC與BD交于點O,在Rt△PFE中,∠EPF=90176。,點E、F分別在邊AD、AB上.(1)如圖1,若點P與點O重合:①求證:AF=DE;②若正方形的邊長為2,當(dāng)∠DOE=15176。時,求線段EF的長;(2)如圖2,若Rt△PFE的頂點P在線段OB上移動(不與點O、B重合),當(dāng)BD=3BP時,證明:PE=2PF.【答案】(1)①證明見解析,②;(2)證明見解析.【解析】【分析】(1)①根據(jù)正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)即可證得:△AOF≌△DOE根據(jù)全等三角形的性質(zhì)證明;②作OG⊥AB于G,根據(jù)余弦的概念求出OF的長,根據(jù)勾股定理求值即可;(2)首先過點P作HP⊥BD交AB于點H,根據(jù)相似三角形的判定和性質(zhì)求出PE與PF的數(shù)量關(guān)系.【詳解】(1)①證明:∵四邊形ABCD是正方形,∴OA=OD,∠OAF=∠ODE=45176。,∠AOD=90176。,∴∠AOE+∠DOE=90176。,∵∠EPF=90176。,∴∠AOF+∠AOE=90176。,∴∠DOE=∠AOF,在△AOF和△DOE中,∴△AOF≌△DOE,∴AF=DE;②解:過點O作OG⊥AB于G,∵正方形的邊長為2,∴OG=BC=,∵∠DOE=15176。,△AOF≌△DOE,∴∠AOF=15176。,∴∠FOG=45176。15176。=30176。,∴OF==2,∴EF=;(2)證明:如圖2,過點P作HP⊥BD交AB于點H,則△HPB為等腰直角三角形,∠HPD=90176。,∴HP=BP,∵BD=3BP,∴PD=2BP,∴PD=2HP,又∵∠HPF+∠HPE=90176。,∠DPE+∠HPE=90176。,∴∠HPF=∠DPE,又∵∠BHP=∠EDP=45176。,∴△PHF∽△PDE,∴,∴PE=2PF.【點睛】此題屬于四邊形的綜合題.考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)以及勾股定理.注意準(zhǔn)確作出輔助線是解此題的關(guān)鍵.11.問題情境在四邊形ABCD中,BA=BC,DC⊥AC,過點D作DE∥AB交BC的延長線于點E,M是邊AD的中點,連接MB,ME. 特例探究(1)如圖1,當(dāng)∠ABC=90176。時,寫出線段MB與ME的數(shù)量關(guān)系,位置關(guān)系; (2)如圖2,當(dāng)∠ABC=120176。時,試探究線段MB與ME的數(shù)量關(guān)系,并證明你的結(jié)論; 拓展延伸(3)如圖3,當(dāng)∠ABC=α?xí)r,請直接用含α的式子表示線段MB與ME之間
點擊復(fù)制文檔內(nèi)容
研究報告相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1