freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中考數(shù)學(xué)專(zhuān)題復(fù)習(xí)分類(lèi)練習(xí)-平行四邊形綜合解答題附答案解析(編輯修改稿)

2025-03-31 07:34 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 質(zhì),判定△BOE≌△DOF(ASA),得出四邊形BEDF的對(duì)角線(xiàn)互相平分,進(jìn)而得出結(jié)論;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的長(zhǎng).詳解:(1)證明:∵四邊形ABCD是矩形,O是BD的中點(diǎn),∴∠A=90176。,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中, ∴△BOE≌△DOF(ASA),∴EO=FO,∴四邊形BEDF是平行四邊形;(2)當(dāng)四邊形BEDF是菱形時(shí),BD⊥EF,設(shè)BE=x,則DE=x,AE=6x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6x)2,解得:x= ,∵BD= =2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.點(diǎn)睛:本題主要考查了矩形的性質(zhì),菱形的性質(zhì)、勾股定理、全等三角形的判定與性質(zhì),熟練掌握矩形的性質(zhì)和勾股定理,證明三角形全等是解決問(wèn)的關(guān)鍵 7.如圖(1)在正方形ABCD中,點(diǎn)E是CD邊上一動(dòng)點(diǎn),連接AE,作BF⊥AE,垂足為G交AD于F(1)求證:AF=DE;(2)連接DG,若DG平分∠EGF,如圖(2),求證:點(diǎn)E是CD中點(diǎn);(3)在(2)的條件下,連接CG,如圖(3),求證:CG=CD.【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)CG=CD,見(jiàn)解析.【解析】【分析】(1)證明△BAF≌△ADE(ASA)即可解決問(wèn)題.(2)過(guò)點(diǎn)D作DM⊥GF,DN⊥GE,垂足分別為點(diǎn)M,N.想辦法證明AF=DF,即可解決問(wèn)題.(3)延長(zhǎng)AE,BC交于點(diǎn)P,由(2)知DE=CD,利用直角三角形斜邊中線(xiàn)的性質(zhì),只要證明BC=CP即可.【詳解】(1)證明:如圖1中,在正方形ABCD中,AB=AD,∠BAD=∠D=90o,∴∠2+∠3=90176。又∵BF⊥AE,∴∠AGB=90176?!唷?+∠2=90176。,∴∠1=∠3在△BAF與△ADE中,∠1=∠3 BA=AD ∠BAF=∠D,∴△BAF≌△ADE(ASA)∴AF=DE.(2)證明:過(guò)點(diǎn)D作DM⊥GF,DN⊥GE,垂足分別為點(diǎn)M,N.由(1)得∠1=∠3,∠BGA=∠AND=90176。,AB=AD∴△BAG≌△ADN(AAS)∴AG=DN, 又DG平分∠EGF,DM⊥GF,DN⊥GE,∴DM=DN,∴DM=AG,又∠AFG=∠DFM,∠AGF=∠DMF∴△AFG≌△DFM(AAS),∴AF=DF=DE=AD=CD,即點(diǎn)E是CD的中點(diǎn).(3)延長(zhǎng)AE,BC交于點(diǎn)P,由(2)知DE=CD,∠ADE=∠ECP=90176。,∠DEA=∠CEP,∴△ADE≌△PCE(ASA)∴AE=PE,又CE∥AB,∴BC=PC,在Rt△BGP中,∵BC=PC,∴CG=BP=BC,∴CG=CD.【點(diǎn)睛】本題屬于四邊形綜合題,考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),角平分線(xiàn)的性質(zhì)定理,直角三角形斜邊中線(xiàn)的性質(zhì)等知識(shí),解題的關(guān)鍵是正確尋找全等三角形解決問(wèn)題,屬于中考?jí)狠S題.8.如圖所示,矩形ABCD中,點(diǎn)E在CB的延長(zhǎng)線(xiàn)上,使CE=AC,連接AE,點(diǎn)F是AE的中點(diǎn),連接BF、DF,求證:BF⊥DF.【答案】見(jiàn)解析.【解析】【分析】延長(zhǎng)BF,交DA的延長(zhǎng)線(xiàn)于點(diǎn)M,連接BD,進(jìn)而求證△AFM≌△EFB,得AM=BE,F(xiàn)B=FM,即可求得BC+BE=AD+AM,進(jìn)而求得BD=BM,根據(jù)等腰三角形三線(xiàn)合一的性質(zhì)即可求證BF⊥DF.【詳解】延長(zhǎng)BF,交DA的延長(zhǎng)線(xiàn)于點(diǎn)M,連接BD.∵四邊形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,∠E=∠MAF,又FA=FE,∴△AFM≌△EFB,∴AM=BE,F(xiàn)B=FM.∵矩形ABCD中,∴AC=BD,AD=BC,∴BC+BE=AD+AM,即CE=MD.∵CE=AC,∴AC=CE= BD =DM.∵FB=FM,∴BF⊥DF.【點(diǎn)睛】本題考查了矩形的性質(zhì),全等三角形的判定和對(duì)應(yīng)邊相等的性質(zhì),等腰三角形三線(xiàn)合一的性質(zhì),本題中求證DB=DM是解題的關(guān)鍵.9.已知,點(diǎn)是的角平分線(xiàn)上的任意一點(diǎn),現(xiàn)有一個(gè)直角繞點(diǎn)旋轉(zhuǎn),兩直角邊,分別與直線(xiàn),相交于點(diǎn),點(diǎn).(1)如圖1,若,猜想線(xiàn)段,之間的數(shù)量關(guān)系,并說(shuō)明理由.(2)如圖2,若點(diǎn)在射線(xiàn)上,且與不垂直,則(1)中的數(shù)量關(guān)系是否仍成立?如成立,請(qǐng)說(shuō)明理由;如不成立,請(qǐng)寫(xiě)出線(xiàn)段,之間的數(shù)量關(guān)系,并加以證明.(3)如圖3,若點(diǎn)在射線(xiàn)的反向延長(zhǎng)線(xiàn)上,且,請(qǐng)直接寫(xiě)出線(xiàn)段的長(zhǎng)度.【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)【解析】【分析】(1)先證四邊形為矩形,再證矩形為正方形,由正方形性質(zhì)可得;(2)過(guò)點(diǎn)作于點(diǎn),于點(diǎn),證四邊形為正方形,再證,可得;(3)根據(jù),可得.【詳解】解:(1)∵,,∴四邊形為矩形.∵是的角平分線(xiàn),∴,∴,∴矩形為正方形,∴,.∴.(2)如圖,過(guò)點(diǎn)作于點(diǎn),于點(diǎn),∵平分,∴四邊形為正方形,由(1)得:,在和中,∴,∴,∴.(3),∴.∵,∴,∴,∴,的長(zhǎng)度為.【點(diǎn)睛】考核知識(shí)點(diǎn):矩形,.10.在中,于點(diǎn),點(diǎn)為邊的中點(diǎn),過(guò)點(diǎn)作,交的延長(zhǎng)線(xiàn)于點(diǎn),連接.如圖,求證:四邊形是矩形;如圖,當(dāng)時(shí),取的中點(diǎn),連接、在不添加任何輔助線(xiàn)和字母的條件下,請(qǐng)直接寫(xiě)出圖中所有的平行四邊形(不包括矩形).【答案】(1) 證明見(jiàn)解析;(2)四邊形、四邊形、四邊形、四邊形、四邊形都是平行四邊形.【解析】【分析】(1)由△AEF≌△CED,推出EF=DE,又AE=EC,推出四邊形ADCF是平行四邊形,只要證明∠ADC=90176。,即可推出四邊形ADCF是矩形.(2)四邊形ABDF、四邊形AGEF、四邊形GBDE、四邊形AGDE、四邊形GDCE都是平行四邊形.【詳解】證明:∵,∴,∵是中點(diǎn),∴,在和中,∴,∴,∵,∴四邊形是平行四邊形,∵,∴,∴四邊形是矩形.∵線(xiàn)段、線(xiàn)段、線(xiàn)段都是的中位線(xiàn),又,∴,,∴四邊形、四邊形、四邊形、四邊形、四邊形都是平行四邊形.【點(diǎn)睛】考查平行四邊形的判定、矩形的判定、三角形的中位線(xiàn)定理、全等三角形的判定和性質(zhì)等知識(shí),正確尋找全等三角形解決問(wèn)題是解題的關(guān)鍵.11.(1)如圖1,將矩形折疊,使落在對(duì)角線(xiàn)上,折痕為,點(diǎn)落在點(diǎn)處,若,則的度數(shù)為_(kāi)_____.(2)小明手中有一張矩形紙
點(diǎn)擊復(fù)制文檔內(nèi)容
醫(yī)療健康相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1