freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)復(fù)習(xí)二次函數(shù)專項綜合練習(xí)含詳細(xì)答案(編輯修改稿)

2025-03-30 22:26 本頁面
 

【文章內(nèi)容簡介】 +bx+c(a≠0)與x軸有兩個交點,那么以拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”,[a,b,c]稱為“拋物線系數(shù)”.(1)任意拋物線都有“拋物線三角形”是   (填“真”或“假”)命題;(2)若一條拋物線系數(shù)為[1,0,﹣2],則其“拋物線三角形”的面積為  ??;(3)若一條拋物線系數(shù)為[﹣1,2b,0],其“拋物線三角形”是個直角三角形,求該拋物線的解析式;(4)在(3)的前提下,該拋物線的頂點為A,與x軸交于O,B兩點,在拋物線上是否存在一點P,過P作PQ⊥x軸于點Q,使得△BPQ∽△OAB?如果存在,求出P點坐標(biāo);如果不存在,請說明理由.【答案】(1)假;(2);(3)y=-x2+2x 或y=-x2-2x;(4)P(1,1)或P(-1,-3)或P(1,-3)或(-1,1).【解析】分析:(1)當(dāng)△>0時,拋物線與x軸有兩個交點,由此可得出結(jié)論;(2)根據(jù)“拋物線三角形”定義得到,由此可得出結(jié)論;(3)根據(jù)“拋物線三角形”定義得到y(tǒng)=-x2+2bx,它與x軸交于點(0,0)和(2b,0);當(dāng)拋物線三角形是直角三角形時,根據(jù)對稱性可知它一定是等腰直角三角形,由拋物線頂點為(b,b2),以及直角三角形斜邊上的中線等于斜邊的一半得到,解方程即可得到結(jié)論;(4)分兩種情況討論:①當(dāng)拋物線為y=-x2+2x 時,②當(dāng)拋物線為y=-x2-2x 時.詳解:(1)當(dāng)△>0時,拋物線與x軸有兩個交點,此時拋物線才有“拋物線三角形”,故此命題為假命題;(2)由題意得:,令y=0,得:x=,∴ S==;(3)依題意:y=-x2+2bx,它與x軸交于點(0,0)和(2b,0);當(dāng)拋物線三角形是直角三角形時,根據(jù)對稱性可知它一定是等腰直角三角形. ∵y=-x2+2bx=,∴頂點為(b,b2),由直角三角形斜邊上的中線等于斜邊的一半得到:,∴,解得:b=0(舍去)或b=177。1,∴y=-x2+2x 或y=-x2-2x.(4)①當(dāng)拋物線為y=-x2+2x 時.∵△AOB為等腰直角三角形,且△BPQ∽△OAB,∴△BPQ為等腰直角三角形,設(shè)P(a,-a2+2a),∴Q((a,0),則|-a2+2a|=|2-a|,即.∵a-2≠0,∴,∴a=177。1,∴P(1,1)或(-1, -3).②當(dāng)拋物線為y=-x2-2x 時.∵△AOB為等腰直角三角形,且△BPQ∽△OAB,∴△BPQ為等腰直角三角形,設(shè)P(a,-a2-2a),∴Q((a,0),則|-a2-2a|=|2+a|,即.∵a+2≠0,∴,∴a=177。1,∴P(1,-3,)或(-1,1).綜上所述:P(1,1)或P(-1,-3)或P(1,-3,)或(-1,1).點睛:本題是二次函數(shù)綜合題.考查了二次函數(shù)的性質(zhì)以及“拋物線三角形”的定義.解題的關(guān)鍵是弄懂“拋物線三角形”的定義以及分類討論.7.已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.(1)求拋物線的解析式;(2)當(dāng)點P運(yùn)動到什么位置時,△PAB的面積有最大值?(3)過點P作x軸的垂線,交線段AB于點D,再過點P做PE∥x軸交拋物線于點E,連結(jié)DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標(biāo);若不存在,說明理由.【答案】(1)拋物線解析式為y=﹣x2+2x+6;(2)當(dāng)t=3時,△PAB的面積有最大值;(3)點P(4,6).【解析】【分析】(1)利用待定系數(shù)法進(jìn)行求解即可得;(2)作PM⊥OB與點M,交AB于點N,作AG⊥PM,先求出直線AB解析式為y=﹣x+6,設(shè)P(t,﹣t2+2t+6),則N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?OB列出關(guān)于t的函數(shù)表達(dá)式,利用二次函數(shù)的性質(zhì)求解可得;(3)由PH⊥OB知DH∥AO,據(jù)此由OA=OB=6得∠BDH=∠BAO=45176。,結(jié)合∠DPE=90176。知若△PDE為等腰直角三角形,則∠EDP=45176。,從而得出點E與點A重合,求出y=6時x的值即可得出答案.【詳解】(1)∵拋物線過點B(6,0)、C(﹣2,0),∴設(shè)拋物線解析式為y=a(x﹣6)(x+2),將點A(0,6)代入,得:﹣12a=6,解得:a=﹣,所以拋物線解析式為y=﹣(x﹣6)(x+2)=﹣x2+2x+6;(2)如圖1,過點P作PM⊥OB與點M,交AB于點N,作AG⊥PM于點G,設(shè)直線AB解析式為y=kx+b,將點A(0,6)、B(6,0)代入,得:,解得:,則直線AB解析式為y=﹣x+6,設(shè)P(t,﹣t2+2t+6)其中0<t<6,則N(t,﹣t+6),∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,∴S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?(AG+BM)=PN?OB=(﹣t2+3t)6=﹣t2+9t=﹣(t﹣3)2+,∴當(dāng)t=3時,△PAB的面積有最大值;(3)如圖2,∵PH⊥OB于H,∴∠DHB=∠AOB=90176。,∴DH∥AO,∵OA=OB=6,∴∠BDH=∠BAO=45176。,∵PE∥x軸、PD⊥x軸,∴∠DPE=90176。,若△PDE為等腰直角三角形,則∠EDP=45176。,∴∠EDP與∠BDH互為對頂角,即點E與點A重合,則當(dāng)y=6時,﹣x2+2x+6=6,解得:x=0(舍)或x=4,即點P(4,6).【點睛】本題考查了二次函數(shù)的綜合問題,涉及到待定系數(shù)法、二次函數(shù)的最值、等腰直角三角形的判定與性質(zhì)等,熟練掌握和靈活運(yùn)用待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質(zhì)、等腰直角三角形的判定與性質(zhì)等是解題的關(guān)鍵.8.(12分)如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)()的圖象與x軸交于A(﹣2,0)、B(8,0)兩點,與y軸交于點B,其對稱軸與x軸交于點D.(1)求該二次函數(shù)的解析式;(2)如圖1,連結(jié)BC,在線段BC上是否存在點E,使得△CDE為等腰三角形?若存在,求出所有符合條件的點E的坐標(biāo);若不存在,請說明理由;(3)如圖2,若點P(m,n)是該二次函數(shù)圖象上的一個動點(其中m>0,n<0),連結(jié)PB,PD,BD,求△BDP面積的最大值及此時點P的坐標(biāo).【答案】(1);(2)E的坐標(biāo)為(,)、(0,﹣4)、(,);(3),(,).【解析】試題分析:(1)采用待定系數(shù)法求得二次函數(shù)的解析式;(2)先求得直線BC的解析式為,則可設(shè)E(m,),然后分三種情況討論即可求得;(3)利用△PBD的面積即可求得.試題解析:(1)∵二次函數(shù)()的圖象與x軸交于A(﹣2,0)、C(8,0)兩點,∴,解得:,∴該二次函數(shù)的解析式為;(2)由二次函數(shù)可知對稱軸x=3,∴D(3,0),∵C(8,0),∴CD=5,由二次函數(shù)可知B(0,﹣4),設(shè)直線BC的解析式為,∴,解得:,∴直線BC的解析式為,設(shè)E(m,),當(dāng)DC=CE時,即,解得,(舍去),∴E(,);當(dāng)DC=DE時,即,解得,(舍去),∴E(0,﹣4);當(dāng)EC=DE時,解得=,∴E(,).綜上,存在點E,使得△CDE為等腰三角形,所有符合條件的點E的坐標(biāo)為(,)、(0,﹣4)、(,);(3)過點P作y軸的平行線交x軸于點F,∵P點的橫坐標(biāo)為m,∴P點的縱坐標(biāo)為:,∵△PBD的面積=
點擊復(fù)制文檔內(nèi)容
研究報告相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1