freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學(xué)一模試題分類匯編——二次函數(shù)綜合附詳細(xì)答案(編輯修改稿)

2025-03-31 22:55 本頁面
 

【文章內(nèi)容簡介】 度,沿A→B的路線向點(diǎn)B運(yùn)動(dòng);過點(diǎn)P作PQ∥BD,與AC相交于點(diǎn)Q,設(shè)運(yùn)動(dòng)時(shí)間為t秒,0<t<5.(1)設(shè)四邊形PQCB的面積為S,求S與t的關(guān)系式;(2)若點(diǎn)Q關(guān)于O的對(duì)稱點(diǎn)為M,過點(diǎn)P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點(diǎn)N,當(dāng)t為何值時(shí),點(diǎn)P、M、N在一直線上?(3)直線PN與AC相交于H點(diǎn),連接PM,NM,是否存在某一時(shí)刻t,使得直線PN平分四邊形APMN的面積?若存在,求出t的值;若不存在,請(qǐng)說明理由.【答案】(1) S=﹣2(0<t<5); (2) 。(3)見解析.【解析】【分析】(1)如圖1,根據(jù)S=S△ABCS△APQ,代入可得S與t的關(guān)系式;(2)設(shè)PM=x,則AM=2x,可得AP=x=4t,計(jì)算x的值,根據(jù)直角三角形30度角的性質(zhì)可得AM=2PM=,根據(jù)AM=AO+OM,列方程可得t的值;(3)存在,通過畫圖可知:N在CD上時(shí),直線PN平分四邊形APMN的面積,根據(jù)面積相等可得MG=AP,由AM=AO+OM,列式可得t的值.【詳解】解:(1)如圖1,∵四邊形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=60176。,AC⊥BD,∴∠OAB=30176。,∵AB=20,∴OB=10,AO=10,由題意得:AP=4t,∴PQ=2t,AQ=2t,∴S=S△ABC﹣S△APQ,=,= ,=﹣2t2+100(0<t<5);(2)如圖2,在Rt△APM中,AP=4t,∵點(diǎn)Q關(guān)于O的對(duì)稱點(diǎn)為M,∴OM=OQ,設(shè)PM=x,則AM=2x,∴AP=x=4t,∴x=,∴AM=2PM=,∵AM=AO+OM,∴=10+10﹣2t,t=;答:當(dāng)t為秒時(shí),點(diǎn)P、M、N在一直線上;(3)存在,如圖3,∵直線PN平分四邊形APMN的面積,∴S△APN=S△PMN,過M作MG⊥PN于G,∴ ,∴MG=AP,易得△APH≌△MGH,∴AH=HM=t,∵AM=AO+OM,同理可知:OM=OQ=10﹣2t,t=10=10﹣2t,t=.答:當(dāng)t為秒時(shí),使得直線PN平分四邊形APMN的面積.【點(diǎn)睛】考查了全等三角形的判定與性質(zhì),對(duì)稱的性質(zhì),三角形和四邊形的面積,二次根式的化簡等知識(shí)點(diǎn),計(jì)算量大,解答本題的關(guān)鍵是熟練掌握動(dòng)點(diǎn)運(yùn)動(dòng)時(shí)所構(gòu)成的三角形各邊的關(guān)系.8.在平面直角坐標(biāo)系中,我們定義直線y=axa為拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)的“衍生直線”;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其“衍生三角形”.已知拋物線與其“衍生直線”交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C.(1)填空:該拋物線的“衍生直線”的解析式為 ,點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ;(2)如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將△ACM以AM所在直線為對(duì)稱軸翻折,點(diǎn)C的對(duì)稱點(diǎn)為N,若△AMN為該拋物線的“衍生三角形”,求點(diǎn)N的坐標(biāo);(3)當(dāng)點(diǎn)E在拋物線的對(duì)稱軸上運(yùn)動(dòng)時(shí),在該拋物線的“衍生直線”上,是否存在點(diǎn)F,使得以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)E、F的坐標(biāo);若不存在,請(qǐng)說明理由.【答案】(1);(2,);(1,0);(2)N點(diǎn)的坐標(biāo)為(0,),(0,);(3)E(1,)、F(0,)或E(1,),F(xiàn)(4,)【解析】【分析】(1)由拋物線的“衍生直線”知道二次函數(shù)解析式的a即可;(2)過A作AD⊥y軸于點(diǎn)D,則可知AN=AC,結(jié)合A點(diǎn)坐標(biāo),則可求出ON的長,可求出N點(diǎn)的坐標(biāo);(3)分別討論當(dāng)AC為平行四邊形的邊時(shí),當(dāng)AC為平行四邊形的對(duì)角線時(shí),求出滿足條件的E、F坐標(biāo)即可【詳解】(1)∵,a=,則拋物線的“衍生直線”的解析式為;聯(lián)立兩解析式求交點(diǎn),解得或,∴A(2,),B(1,0);(2)如圖1,過A作AD⊥y軸于點(diǎn)D,在中,令y=0可求得x= 3或x=1,∴C(3,0),且A(2,),∴AC=由翻折的性質(zhì)可知AN=AC=,∵△AMN為該拋物線的“衍生三角形”,∴N在y軸上,且AD=2,在Rt△AND中,由勾股定理可得DN=,∵OD=,∴ON=或ON=,∴N點(diǎn)的坐標(biāo)為(0,),(0,);(3)①當(dāng)AC為平行四邊形的邊時(shí),如圖2 ,過F作對(duì)稱軸的垂線FH,過A作AK⊥x軸于點(diǎn)K,則有AC∥EF且AC=EF,∴∠ ACK=∠ EFH,在△ ACK和△ EFH中∴△ ACK≌△ EFH,∴FH=CK=1,HE=AK=,∵拋物線的對(duì)稱軸為x=1,∴ F點(diǎn)的橫坐標(biāo)為0或2,∵點(diǎn)F在直線AB上,∴當(dāng)F點(diǎn)的橫坐標(biāo)為0時(shí),則F(0,),此時(shí)點(diǎn)E在直線AB下方,∴E到y(tǒng)軸的距離為EHOF==,即E的縱坐標(biāo)為,∴ E(1,);當(dāng)F點(diǎn)的橫坐標(biāo)為2時(shí),則F與A重合,不合題意,舍去;②當(dāng)AC為平行四邊形的對(duì)角線時(shí),∵ C(3,0),且A(2,),∴線段AC的中點(diǎn)坐標(biāo)為(, ),設(shè)E(1,t),F(xiàn)(x,y),則x1=2(),y+t=,∴x= 4,y=t,t=(4)+,解得t=,∴E(1,),F(xiàn)(4,);綜上可知存在滿足條件的點(diǎn)F,此時(shí)E(1,)、(0,)或E(1,),F(xiàn)(4,)【點(diǎn)睛】本題是對(duì)二次函數(shù)的綜合知識(shí)考查,熟練掌握二次函數(shù),幾何圖形及輔助線方法是解決本題的關(guān)鍵,屬于壓軸題9.拋物線L:y=﹣x2+bx+c經(jīng)過點(diǎn)A(0,1),與它的對(duì)稱軸直線x=1交于點(diǎn)B.(1)直接寫出拋物線L的解析式;(2)如圖1,過定點(diǎn)的直線y=kx﹣k+4(k<0)與拋物線L交于點(diǎn)M、N.若△BMN的面積等于1,求k的值;(3)如圖2,將拋物線L向上平移m(m>0)個(gè)單位長度得到拋物線L1,拋物線L1與y軸交于點(diǎn)C,過點(diǎn)C作y軸的垂線交拋物線L1于另一點(diǎn)D.F為拋物線L1的對(duì)稱軸與x軸的交點(diǎn),P為線段OC上一點(diǎn).若△PCD與△POF相似,并且符合條件的點(diǎn)P恰有2個(gè),求m的值及相應(yīng)點(diǎn)P的坐標(biāo).【答案】(1)y=﹣x2+2x+1;(2)3;(3)當(dāng)m=2﹣1時(shí),點(diǎn)P的坐標(biāo)為(0,)和(0,);當(dāng)m=2時(shí),點(diǎn)P的坐標(biāo)為(0,1)和(0,2).【解析】【分析】(1)根據(jù)對(duì)稱軸為直線x=1且拋物線過點(diǎn)A(0,1)利用待定系數(shù)法進(jìn)行求解可即得;(2)根據(jù)直線y=kx﹣k+4=k(x﹣1)+4知直線所過定點(diǎn)G坐標(biāo)為(1,4),從而得出BG=2,由S△BMN=S△BNG﹣S△BMG=BG?xN﹣BG?xM=1得出xN﹣xM=1,聯(lián)立直線和拋物線解析式求得x=,根據(jù)xN﹣xM=1列出關(guān)于k的方程,解之可得;(3)設(shè)拋物線L1的解析式為y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再設(shè)P(0,t),分△PCD∽△POF和△PCD∽△POF兩種情況,由對(duì)應(yīng)邊成比例得出關(guān)于t與m的方程,利用符合條件的點(diǎn)P恰有2個(gè),結(jié)合方程的解的情況求解可得.【詳解】(1)由題意知,解得:,∴拋物線L的解析式為y=﹣x2+2x+1;(2)如圖1,設(shè)M點(diǎn)的橫坐標(biāo)為xM,N點(diǎn)的橫坐標(biāo)為xN,∵y=kx﹣k+4=k(x﹣1)+4,∴當(dāng)x=1時(shí),y=4,即該直線所過定點(diǎn)G坐標(biāo)為(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴點(diǎn)B(1,2),則BG=2,∵S△BMN=1,即S△BNG﹣S△BMG=BG?(xN﹣1)BG?(xM1)=1,∴xN﹣xM=1,由得:x2+(k﹣2)x﹣k+3=0,解得:x==,則xN=、xM=,由xN﹣xM=1得=1,∴k=177。3,∵k<0,∴k=﹣3;(3)如圖2,設(shè)拋物線L
點(diǎn)擊復(fù)制文檔內(nèi)容
法律信息相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1