freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

全國備戰(zhàn)中考數(shù)學二次函數(shù)的綜合備戰(zhàn)中考真題分類匯總及答案解析(編輯修改稿)

2025-03-31 22:05 本頁面
 

【文章內容簡介】 拋物線的一個交點,當運動到t秒時,QM=2PM,直接寫出t的值.【答案】(1)拋物線的解析式為y=x2﹣x;(2)證明見解析;(3)當運動時間為或秒時,QM=2PM.【解析】【分析】(1)(1)A,B的坐標代入拋物線y=ax2+bx中確定解析式;(2)把A點坐標代入所設的AF的解析式,與拋物線的解析式構成方程組,解得G點坐標,再通過證明三角形相似,得到同位角相等,兩直線平行;(3)具體見詳解.【詳解】.解:(1)將點A(﹣1,2)、B(3,6)代入中, ,解得: ,∴拋物線的解析式為y=x2﹣x. (2)證明:設直線AF的解析式為y=kx+m,將點A(﹣1,2)代入y=kx+m中,即﹣k+m=2,∴k=m﹣2,∴直線AF的解析式為y=(m﹣2)x+m.聯(lián)立直線AF和拋物線解析式成方程組, ,解得: 或 ,∴點G的坐標為(m,m2﹣m).∵GH⊥x軸,∴點H的坐標為(m,0).∵拋物線的解析式為y=x2﹣x=x(x﹣1),∴點E的坐標為(1,0).過點A作AA′⊥x軸,垂足為點A′,如圖1所示.∵點A(﹣1,2),∴A′(﹣1,0),∴AE=2,AA′=2.∴ =1, = =1,∴= ,∵∠AA′E=∠FOH,∴△AA′E∽△FOH,∴∠AEA′=∠FHO,∴FH∥AE. (3)設直線AB的解析式為y=k0x+b0,將A(﹣1,2)、B(3,6)代入y=k0x+b0中,得 ,解得: ,∴直線AB的解析式為y=x+3,當運動時間為t秒時,點P的坐標為(t﹣3,t),點Q的坐標為(t,0).當點M在線段PQ上時,過點P作PP′⊥x軸于點P′,過點M作MM′⊥x軸于點M′,則△PQP′∽△MQM′,如圖2所示,∵QM=2PM,∴ =,∴QM′=QP39。=2,MM′=PP39。=t,∴點M的坐標為(t﹣2, t).又∵點M在拋物線y=x2﹣x上,∴ t=(t﹣2)2﹣(t﹣2),解得:t=;當點M在線段QP的延長線上時,同理可得出點M的坐標為(t﹣6,2t),∵點M在拋物線y=x2﹣x上,∴2t=(t﹣6)2﹣(t﹣6),解得:t=.綜上所述:當運動時間秒 或 時,QM=2PM. 【點睛】本題考查二次函數(shù)綜合運用,綜合能力是解題關鍵.8.某商場購進一批單價為4元的日用品.若按每件5元的價格銷售,每月能賣出3萬件;若按每件6元的價格銷售,每月能賣出2萬件,假定每月銷售件數(shù)y(件)與價格x(元/件)之間滿足一次函數(shù)關系.(1)試求y與x之間的函數(shù)關系式;(2)當銷售價格定為多少時,才能使每月的利潤最大?每月的最大利潤是多少?【答案】(1)(2)當銷售價格定為6元時,每月的利潤最大,每月的最大利潤為40000元【解析】解:(1)由題意,可設y=kx+b,把(5,30000),(6,20000)代入得:,解得:。∴y與x之間的關系式為:。(2)設利潤為W,則,∴當x=6時,W取得最大值,最大值為40000元。答:當銷售價格定為6元時,每月的利潤最大,每月的最大利潤為40000元。(1)利用待定系數(shù)法求得y與x之間的一次函數(shù)關系式。(2)根據(jù)“利潤=(售價﹣成本)售出件數(shù)”,可得利潤W與銷售價格x之間的二次函數(shù)關系式,然后求出其最大值。9.如圖,在平面直角坐標系中,A、B為x軸上兩點,C、D為y軸上的兩點,經(jīng)過點A、C、B的拋物線的一部分C1與經(jīng)過點A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”.已知點C的坐標為(0,),點M是拋物線C2:(<0)的頂點.(1)求A、B兩點的坐標;(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;(3)當△BDM為直角三角形時,求的值.【答案】(1)A(,0)、B(3,0).(2)存在.S△PBC最大值為 (3)或時,△BDM為直角三角形.【解析】【分析】(1)在中令y=0,即可得到A、B兩點的坐標.(2)先用待定系數(shù)法得到拋物線C1的解析式,由S△PBC = S△POC+ S△BOP–S△BOC得到△PBC面積的表達式,根據(jù)二次函數(shù)最值原理求出最大值.(3)先表示出DM2,BD2,MB2,再分兩種情況:①∠BMD=90176。時;②∠BDM=90176。時,討論即可求得m的值.【詳解】解:(1)令y=0,則,∵m<0,∴,解得:,.∴A(,0)、B(3,0).(2)存在.理由如下:∵設拋物線C1的表達式為(),把C(0,)代入可得,.∴C1的表達式為:,即.設P(p,),∴ S△PBC = S△POC+ S△BOP–S△BOC=.∵0,∴當時,S△PBC最大值為.(3)由C2可知: B(3,0),D(0,),M(1,),∴BD2=,BM2=,DM2=.∵∠MBD90176。, ∴討論∠BMD=90176。和∠BDM=90176。兩種情況:當∠BMD=90176。時,BM2+ DM2= BD2,即+=,解得:,(舍去).當∠BDM=90176。時,BD2+ DM2= BM2,即+=,解得:,(舍去) .綜上所述,或時,△BDM為直角三角形.10.如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內的一個動點,且點P的橫坐標為t.(1)求拋物線的表達式;(2)設拋物線的對稱軸為l,l與x軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標;若不存在,請說明理由.(3)如圖2,連接BC,PB,PC,設△PBC的面積為S.①求S關于t的函數(shù)表達式;②求P點到直線BC的距離的最大值,并求出此時點P的坐標.【答案】(1)y=﹣x2+2x+3.(2)當t=2時,點M的坐標為(1,6);當t≠2時,不存在,理由見解析;(3)y=﹣x+3;P點到直線BC的距離的最大值為,此時點P的坐標為(,).【解析】【分析】(1)由點A、B的坐標,利用待定系數(shù)法即可求出拋物線的表達式;(2)連接PC,交拋物線對稱軸l于點E,由點A、B的坐標可得出對稱軸l為直線x=1,分t=2和t≠2兩種情況考慮:當t=2時,由拋物線的對稱性可得出此時存在點M,使得四邊形CDPM是平行四邊形,再根據(jù)點C的坐標利用平行四邊形的性質可求出點P、M的坐標;當t≠2時,不存在,利用平行四邊形對角線互相平分結合CE≠PE可得出此時不存在符合題意的點M;(3)①過點P作PF∥y軸,交BC于點F,由點B、C的坐標利用待定系數(shù)法可求出直線BC的解析式,根據(jù)點P的坐標可得出點F的坐標,進而可得出PF的長度,再由三角形的面積公式即可求出S關于t的函數(shù)表達式;②利用二次函數(shù)的性質找出S的最大值,利用勾股定理可求出線段BC的長度,利用面積法可求出P點到直線BC的距離的最大值,再找出此時點P的坐標即可得出結論.【詳解】(1)將A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,得,解得:,∴拋物線的表達式為y=﹣x2+2x+3;(2)在圖1中,連接PC,交拋物線對稱軸l于點E,∵拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,∴拋物線的對稱軸為直線x=1,當t=2時,點C、P關于直線l對稱,此時存在點M,使得四邊形CDPM是平行四邊形,∵拋物線的表達式為y=﹣x2+2x+3,∴點C的坐標為(0,3),點P的坐標為(2,3),∴點M的坐標為(1,6);當t≠2時,不存在,理由如下:若四邊形CDPM是平行四邊形,則CE=PE,∵點C的橫坐標為0,點E的橫坐標為0,∴點P的橫坐標t=12﹣0=2,又∵t≠2,∴不存在;(3
點擊復制文檔內容
范文總結相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1