freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

備戰(zhàn)中考數(shù)學易錯題專題復習-二次函數(shù)練習題及答案(編輯修改稿)

2025-03-31 22:12 本頁面
 

【文章內容簡介】 一動點,若△PAD為等腰三角形,求出點P的坐標;(3)證明:當直線l繞點D旋轉時,均為定值,并求出該定值.【答案】(1)a=,A(﹣,0),拋物線的對稱軸為x=;(2)點P的坐標為(,0)或(,﹣4);(3).【解析】試題分析:(1)由點C的坐標為(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到關于x的方程,解關于x的方程可得到點A和點B的坐標,最后利用拋物線的對稱性可確定出拋物線的對稱軸;(2)利用特殊銳角三角函數(shù)值可求得∠CAO=60176。,依據AE為∠BAC的角平分線可求得∠DAO=30176。,然后利用特殊銳角三角函數(shù)值可求得OD=1,則可得到點D的坐標.設點P的坐標為(,a).依據兩點的距離公式可求得AD、AP、DP的長,然后分為AD=PA、AD=DP、AP=DP三種情況列方程求解即可;(3)設直線MN的解析式為y=kx+1,接下來求得點M和點N的橫坐標,于是可得到AN的長,然后利用特殊銳角三角函數(shù)值可求得AM的長,最后將AM和AN的長代入化簡即可.試題解析:(1)∵C(0,3),∴﹣9a=3,解得:a=.令y=0得:,∵a≠0,∴,解得:x=﹣或x=,∴點A的坐標為(﹣,0),B(,0),∴拋物線的對稱軸為x=.(2)∵OA=,OC=3,∴tan∠CAO=,∴∠CAO=60176。.∵AE為∠BAC的平分線,∴∠DAO=30176。,∴DO=AO=1,∴點D的坐標為(0,1).設點P的坐標為(,a).依據兩點間的距離公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2.當AD=PA時,4=12+a2,方程無解.當AD=DP時,4=3+(a﹣1)2,解得a=0或a=2(舍去),∴點P的坐標為(,0).當AP=DP時,12+a2=3+(a﹣1)2,解得a=﹣4,∴點P的坐標為(,﹣4).綜上所述,點P的坐標為(,0)或(,﹣4).(3)設直線AC的解析式為y=mx+3,將點A的坐標代入得:,解得:m=,∴直線AC的解析式為.設直線MN的解析式為y=kx+1.把y=0代入y=kx+1得:kx+1=0,解得:x=,∴點N的坐標為(,0),∴AN==.將與y=kx+1聯(lián)立解得:x=,∴點M的橫坐標為.過點M作MG⊥x軸,垂足為G.則AG=.∵∠MAG=60176。,∠AGM=90176。,∴AM=2AG==,∴= == =.點睛:本題主要考查的是二次函數(shù)的綜合應用,解答本題主要應用了待定系數(shù)法求一次函數(shù)、二次函數(shù)的解析式,分類討論是解答問題(2)的關鍵,求得點M的坐標和點N的坐標是解答問題(3)的關鍵.7.如圖1,拋物線C1:y=ax2﹣2ax+c(a<0)與x軸交于A、B兩點,與y軸交于點C.已知點A的坐標為(﹣1,0),點O為坐標原點,OC=3OA,拋物線C1的頂點為G.(1)求出拋物線C1的解析式,并寫出點G的坐標;(2)如圖2,將拋物線C1向下平移k(k>0)個單位,得到拋物線C2,設C2與x軸的交點為A′、B′,頂點為G′,當△A′B′G′是等邊三角形時,求k的值:(3)在(2)的條件下,如圖3,設點M為x軸正半軸上一動點,過點M作x軸的垂線分別交拋物線CC2于P、Q兩點,試探究在直線y=﹣1上是否存在點N,使得以P、Q、N為頂點的三角形與△AOQ全等,若存在,直接寫出點M,N的坐標:若不存在,請說明理由.【答案】(1)拋物線C1的解析式為y=﹣x2+2x+3,點G的坐標為(1,4);(2)k=1;(3)M1(,0)、N1(,﹣1);M2(,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).【解析】【分析】(1)由點A的坐標及OC=3OA得點C坐標,將A、C坐標代入解析式求解可得;(2)設拋物線C2的解析式為y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,′作G′D⊥x軸于點D,設BD′=m,由等邊三角形性質知點B′的坐標為(m+1,0),點G′的坐標為(1,m),代入所設解析式求解可得;(3)設M(x,0),則P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),根據PQ=OA=1且∠AOQ、∠PQN均為鈍角知△AOQ≌△PQN,延長PQ交直線y=﹣1于點H,證△OQM≌△QNH,根據對應邊相等建立關于x的方程,解之求得x的值從而進一步求解即可.【詳解】(1)∵點A的坐標為(﹣1,0),∴OA=1,∴OC=3OA,∴點C的坐標為(0,3),將A、C坐標代入y=ax2﹣2ax+c,得:,解得:,∴拋物線C1的解析式為y=﹣x2+2x+3=﹣(x﹣1)2+4,所以點G的坐標為(1,4);(2)設拋物線C2的解析式為y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,過點G′作G′D⊥x軸于點D,設BD′=m,∵△A′B′G′為等邊三角形,∴G′D=B′D=m,則點B′的坐標為(m+1,0),點G′的坐標為(1,m),將點B′、G′的坐標代入y=﹣(x﹣1)2+4﹣k,得:,解得:(舍),∴k=1;(3)設M(x,0),則P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),∴PQ=OA=1,∵∠AOQ、∠PQN均為鈍角,∴△AOQ≌△PQN,如圖2,延長PQ交直線y=﹣1于點H,則∠QHN=∠OMQ=90176。,又∵△AOQ≌△PQN,∴OQ=QN,∠AOQ=∠PQN,∴∠MOQ=∠HQN,∴△OQM≌△QNH(AAS),∴OM=QH,即x=﹣x2+2x+2+1,解得:x=(負值舍去),當x=時,HN=QM=﹣x2+2x+2=,點M(,0),∴點N坐標為(+,﹣1),即(,﹣1);或(﹣,﹣1),即(1,﹣1);如圖3,同理可得△OQM≌△PNH,∴OM=PH,即x=﹣(﹣x2+2x+2)﹣1,解得:x=﹣1(舍)或x=4,當x=4時,點M的坐標為(4,0),HN=QM=﹣(﹣x2+2x+2)=6,∴點N的坐標為(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1);綜上點M1(,0)、N1(,﹣1);M2(,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).【點睛】本題考查的是二次函數(shù)的綜合題,涉及到的知識有待定系數(shù)法、等邊三角形的性質、全等三角形的判定與性質等,熟練掌握待定系數(shù)法求函數(shù)解析式、等邊三角形的性質、全等三角形的判定與性質、運用分類討論思想是解題的關鍵.8.在平面直角坐標系中,拋物線過點,與y軸交于點C,連接AC,BC,將沿BC所在的直線翻折,得到,連接OD.(1)用含a的代數(shù)式表示點C的坐標.(2)如圖1,若點D落在拋物線的對稱軸上,且在x軸上方,求拋物線的解析式.(3)設的面積為S1,的面積為S2,若,求a的值.【答案】(1);(2) 拋物線的表達式為:;(3) 或【解析】【分析】(1)根據待定系數(shù)法,得到拋物
點擊復制文檔內容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1