freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)專題二次函數(shù)綜合檢測試卷含答案解析(編輯修改稿)

2025-03-30 22:25 本頁面
 

【文章內(nèi)容簡介】 ∴y=a要在AB線段的上方,∴a>﹣3∴﹣3<a≤0;【點睛】本題二次函數(shù)的圖象及性質(zhì);熟練掌握二次函數(shù)圖象的特點,函數(shù)與線段相交的交點情況是解題的關(guān)鍵.8.(12分)如圖,在平面直角坐標系xOy中,二次函數(shù)()的圖象與x軸交于A(﹣2,0)、B(8,0)兩點,與y軸交于點B,其對稱軸與x軸交于點D.(1)求該二次函數(shù)的解析式;(2)如圖1,連結(jié)BC,在線段BC上是否存在點E,使得△CDE為等腰三角形?若存在,求出所有符合條件的點E的坐標;若不存在,請說明理由;(3)如圖2,若點P(m,n)是該二次函數(shù)圖象上的一個動點(其中m>0,n<0),連結(jié)PB,PD,BD,求△BDP面積的最大值及此時點P的坐標.【答案】(1);(2)E的坐標為(,)、(0,﹣4)、(,);(3),(,).【解析】試題分析:(1)采用待定系數(shù)法求得二次函數(shù)的解析式;(2)先求得直線BC的解析式為,則可設(shè)E(m,),然后分三種情況討論即可求得;(3)利用△PBD的面積即可求得.試題解析:(1)∵二次函數(shù)()的圖象與x軸交于A(﹣2,0)、C(8,0)兩點,∴,解得:,∴該二次函數(shù)的解析式為;(2)由二次函數(shù)可知對稱軸x=3,∴D(3,0),∵C(8,0),∴CD=5,由二次函數(shù)可知B(0,﹣4),設(shè)直線BC的解析式為,∴,解得:,∴直線BC的解析式為,設(shè)E(m,),當(dāng)DC=CE時,即,解得,(舍去),∴E(,);當(dāng)DC=DE時,即,解得,(舍去),∴E(0,﹣4);當(dāng)EC=DE時,解得=,∴E(,).綜上,存在點E,使得△CDE為等腰三角形,所有符合條件的點E的坐標為(,)、(0,﹣4)、(,);(3)過點P作y軸的平行線交x軸于點F,∵P點的橫坐標為m,∴P點的縱坐標為:,∵△PBD的面積===,∴當(dāng)m=時,△PBD的最大面積為,∴點P的坐標為(,).考點:二次函數(shù)綜合題.9.已知二次函數(shù)的圖象以A(﹣1,4)為頂點,且過點B(2,﹣5)(1)求該函數(shù)的關(guān)系式;(2)求該函數(shù)圖象與坐標軸的交點坐標;(3)將該函數(shù)圖象向右平移,當(dāng)圖象經(jīng)過原點時,A、B兩點隨圖象移至A′、B′,求△O A′B′的面積.【答案】(1)y=﹣x2﹣2x+3;(2)拋物線與x軸的交點為:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了拋物線的頂點坐標,可用頂點式設(shè)該二次函數(shù)的解析式,然后將B點坐標代入,即可求出二次函數(shù)的解析式;(2)根據(jù)函數(shù)解析式,令x=0,可求得拋物線與y軸的交點坐標;令y=0,可求得拋物線與x軸交點坐標;(3)由(2)可知:拋物線與x軸的交點分別在原點兩側(cè),由此可求出當(dāng)拋物線與x軸負半軸的交點平移到原點時,拋物線平移的單位,由此可求出A′、B′的坐標.由于△OA′B′不規(guī)則,可用面積割補法求出△OA′B′的面積.【詳解】(1)設(shè)拋物線頂點式y(tǒng)=a(x+1)2+4,將B(2,﹣5)代入得:a=﹣1,∴該函數(shù)的解析式為:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此拋物線與y軸的交點為:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即拋物線與x軸的交點為:(﹣3,0),(1,0);(3)設(shè)拋物線與x軸的交點為M、N(M在N的左側(cè)),由(2)知:M(﹣3,0),N(1,0),當(dāng)函數(shù)圖象向右平移經(jīng)過原點時,M與O重合,因此拋物線向右平移了3個單位,故A39。(2,4),B39。(5,﹣5),∴S△OA′B′=(2+5)9﹣24﹣55=15.【點睛】本題考查了用待定系數(shù)法求拋物線解析式、函數(shù)圖象與坐標軸交點、圖形面積的求法等知識.熟練掌握待定系數(shù)法、函數(shù)圖象與坐標軸的交點的求解方法、不規(guī)則圖形的面積的求解方法等是解題的關(guān)鍵.10.在平面直角坐標系xOy中,已知拋物線的頂點坐標為(2,0),且經(jīng)過點(4,1),如圖,直線y=x與拋物線交于A、B兩點,直線l為y=﹣1.(1)求拋物線的解析式;(2)在l上是否存在一點P,使PA+PB取得最小值?若存在,求出點P的坐標;若不存在,請說明理由.(3)知F(x0,y0)為平面內(nèi)一定點,M(m,n)為拋物線上一動點,且點M到直線l的距離與點M到點F的距離總是相等,求定點F的坐標.【答案】(1)拋物線的解析式為y=x2﹣x+1.(2)點P的坐標為(,﹣1).(3)定點F的坐標為(2,1).【解析】分析:(1)由拋物線的頂點坐標為(2,0),可設(shè)拋物線的解析式為y=a(x2)2,由拋物線過點(4,1),利用待定系數(shù)法即可求出拋物線的解析式;(2)聯(lián)立直線AB與拋物線解析式成方程組,通過解方程組可求出點A、B的坐標,作點B關(guān)于直線l的對稱點B′,連接AB′交直線l于點P,此時PA+PB取得最小值,根據(jù)點B的坐標可得出點B′的坐標,根據(jù)點A、B′的坐標利用待定系數(shù)法可求出直線AB′的解析式,再利用一次函數(shù)圖象上點的坐標特征即可求出點P的坐標;(3)由點M到直線l的距離與點M到點F的距離總是相等結(jié)合二次函數(shù)圖象上點的坐標特征,即可得出(1y0)m2+(22x0+2y0)m+x02+y022y03=0,由m的任意性可得出關(guān)于x0、y0的方程組,解之即可求出頂點F的坐標.詳解:(1)∵拋物線的頂點坐標為(2,0),設(shè)拋物線的解析式為y=a(x2)2.∵該拋物線經(jīng)過點(4,1),∴1=4a,解得:a=,∴拋物線的解析式為y=(x2)2=x2x+1.(2)聯(lián)立直線AB與拋物線解析式成方程組,得:,解得:,∴點A的坐標為(1,),點B的坐標為(4,1).作點B關(guān)于直線l的對稱點B′,連接AB′交直線l于點P,此時PA+PB取得最小值(如圖1所示).∵點B(4,1),直線l為y=1,∴點B′的坐標為(4,3).設(shè)直線AB′的解析式為y=kx+b(k≠0),將A(1,)、B′(4,3)代入y=kx+b,得:,解得:,∴直線AB′的解析式為y=x+,當(dāng)y=1時,有x+=1,解得:x=,∴點P的坐標為(,1).(3)∵點M到直線l的距離與點M到點F的距離總是相等,∴(mx0)2+(ny0)2=(n+1)2,∴m22x0m+x022y0n+y02=2n+1.∵M(m,n)為拋物線上一動點,∴n=m2m+1,∴m22x0m+x022y0(m2m+1)+y02=2(m2m+1)+1,整理得:(1y0)m2+(22x0+2y0)m+x02+y022y03=0.∵m為任意值,∴,∴,∴定點F的坐標為(2,1).點睛:本題考查了待定系數(shù)法求二次(一次)函數(shù)解析式、二次(一次)函數(shù)圖象上點的坐標特征、軸對稱中的最短路徑問題以及解方程組,解題的關(guān)鍵是:(1)根據(jù)點的坐標,利用待定系數(shù)法求出二次函數(shù)解
點擊復(fù)制文檔內(nèi)容
范文總結(jié)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1