freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)專題二次函數(shù)綜合檢測試卷含答案解析-資料下載頁

2025-03-30 22:25本頁面
  

【正文】 【解析】【分析】(1)利用拋物線解析式得到A、B、C三點坐標(biāo),然后利用三角形面積公式列出方程解出a;(2)利用第一問得到A、B、C三點坐標(biāo),求出AC解析式,找到AC垂直平分線的解析式,與AB垂直平分線解析式聯(lián)立,解出x、y即為圓心坐標(biāo);(3)過點P做PD⊥x軸,PD=d,發(fā)現(xiàn)△ABP與△QBP的面積相等,得到A、D兩點到PB得距離相等,可得,求出PB解析式,與二次函數(shù)解析式聯(lián)立得到P點坐標(biāo),又易證,得到BQ=AP=,設(shè)出Q點坐標(biāo),點與點的距離列出方程,解出Q點坐標(biāo)即可【詳解】(1)解:由題意得由圖知: 所以A(),,=6∴ (2)由(1)得A(),,∴直線AC得解析式為:AC中點坐標(biāo)為∴AC的垂直平分線為:又∵AB的垂直平分線為: ∴ 得 外接圓圓心的坐標(biāo)(1,1).(3)解:過點P做PD⊥x軸由題意得:PD=d,∴ =2d∵的面積為∴,即A、D兩點到PB得距離相等∴設(shè)PB直線解析式為。過點 ∴∴易得 所以P(4,5),由題意及易得:∴BQ=AP=設(shè)Q(m,1)()∴∴Q.【點睛】本題考查二次函數(shù)綜合性問題,涉及到一次函數(shù)、三角形外接圓圓心、全等三角形等知識點,第一問關(guān)鍵在于用a表示出A、B、C三點坐標(biāo);第二問關(guān)鍵在于找到AC垂直平分線的解析式,與AB垂直平分線解析式;第三問關(guān)鍵在于能夠求出PB的解析式14.如圖,直線y=﹣x+分別與x軸、y軸交于B、C兩點,點A在x軸上,∠ACB=90176。,拋物線y=ax2+bx+經(jīng)過A,B兩點.(1)求A、B兩點的坐標(biāo);(2)求拋物線的解析式;(3)點M是直線BC上方拋物線上的一點,過點M作MH⊥BC于點H,作MD∥y軸交BC于點D,求△DMH周長的最大值.【答案】(1)(﹣1,0)(2)y=﹣x2+x+(3)【解析】試題分析:(1)由直線解析式可求得B、C坐標(biāo),在Rt△BOC中由三角函數(shù)定義可求得∠OCB=60176。,則在Rt△AOC中可得∠ACO=30176。,利用三角函數(shù)的定義可求得OA,則可求得A點坐標(biāo);(2)由A、B兩點坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(3)由平行線的性質(zhì)可知∠MDH=∠BCO=60176。,在Rt△DMH中利用三角函數(shù)的定義可得到DH、MH與DM的關(guān)系,可設(shè)出M點的坐標(biāo),則可表示出DM的長,從而可表示出△DMH的周長,利用二次函數(shù)的性質(zhì)可求得其最大值.試題解析: (1)∵直線y=﹣x+分別與x軸、y軸交于B、C兩點,∴B(3,0),C(0,),∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60176。,∵∠ACB=90176。,∴∠ACO=30176。,∴=tan30176。=,即=,解得AO=1,∴A(﹣1,0);(2)∵拋物線y=ax2+bx+經(jīng)過A,B兩點,∴,解得,∴拋物線解析式為y=﹣x2+x+;(3)∵M(jìn)D∥y軸,MH⊥BC,∴∠MDH=∠BCO=60176。,則∠DMH=30176。,∴DH=DM,MH=DM,∴△DMH的周長=DM+DH+MH=DM+DM+DM=DM,∴當(dāng)DM有最大值時,其周長有最大值,∵點M是直線BC上方拋物線上的一點,∴可設(shè)M(t,﹣t2+t+),則D(t,﹣t+),∴DM=﹣t2+t+),則D(t,﹣t+),∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+,∴當(dāng)t=時,DM有最大值,最大值為,此時DM==,即△DMH周長的最大值為.考點:二次函數(shù)的綜合應(yīng)用,待定系數(shù)法,三角函數(shù)的定義,4方程思想15.如圖1,四邊形是矩形,點的坐標(biāo)為,沿以每秒1個單位長度的速度向點運動,同時點從點出發(fā),沿以每秒2個單位長度的速度向點運動,.(1)當(dāng)時,線段的中點坐標(biāo)為________;(2)當(dāng)與相似時,求的值;(3)當(dāng)時,拋物線經(jīng)過、兩點,與軸交于點,拋物線的頂點為,使,若存在,求出所有滿足條件的點坐標(biāo);若不存在,說明理由.【答案】(1)的中點坐標(biāo)是;(2)或;(3),.【解析】分析:(1)先根據(jù)時間t=2,和速度可得動點P和Q的路程OP和AQ的長,再根據(jù)中點坐標(biāo)公式可得結(jié)論;(2)根據(jù)矩形的性質(zhì)得:∠B=∠PAQ=90176。,所以當(dāng)△CBQ與△PAQ相似時,存在兩種情況:①當(dāng)△PAQ∽△QBC時,②當(dāng)△PAQ∽△CBQ時,分別列方程可得t的值;(3)根據(jù)t=1求拋物線的解析式,根據(jù)Q(3,2),M(0,2),可得MQ∥x軸,∴KM=KQ,KE⊥MQ,畫出符合條件的點D,證明△KEQ∽△QMH,列比例式可得點D的坐標(biāo),同理根據(jù)對稱可得另一個點D.詳解:(1)如圖1,∵點A的坐標(biāo)為(3,0),∴OA=3,當(dāng)t=2時,OP=t=2,AQ=2t=4,∴P(2,0),Q(3,4),∴線段PQ的中點坐標(biāo)為:(,),即(,2);故答案為:(,2);(2)如圖1,∵四邊形OABC是矩形,∴∠B=∠PAQ=90176。∴當(dāng)△CBQ與△PAQ相似時,存在兩種情況:①當(dāng)△PAQ∽△QBC時,∴,4t215t+9=0,(t3)(t)=0,t1=3(舍),t2=,②當(dāng)△PAQ∽△CBQ時,∴,t29t+9=0,t=,∵0≤t≤6,>7,∴x=不符合題意,舍去,綜上所述,當(dāng)△CBQ與△PAQ相似時,t的值是或;(3)當(dāng)t=1時,P(1,0),Q(3,2),把P(1,0),Q(3,2)代入拋物線y=x2+bx+c中得:,解得:,∴拋物線:y=x23x+2=(x)2,∴頂點k(,),∵Q(3,2),M(0,2),∴MQ∥x軸,作拋物線對稱軸,交MQ于E,∴KM=KQ,KE⊥MQ,∴∠MKE=∠QKE=∠MKQ,如圖2,∠MQD=∠MKQ=∠QKE,設(shè)DQ交y軸于H,∵∠HMQ=∠QEK=90176。,∴△KEQ∽△QMH,∴,∴,∴MH=2,∴H(0,4),易得HQ的解析式為:y=x+4,則,x23x+2=x+4,解得:x1=3(舍),x2=,∴D(,);同理,在M的下方,y軸上存在點H,如圖3,使∠HQM=∠MKQ=∠QKE,由對稱性得:H(0,0),易得OQ的解析式:y=x,則,x23x+2=x,解得:x1=3(舍),x2=,∴D(,);綜上所述,點D的坐標(biāo)為:D(,)或(,).點睛:本題是二次函數(shù)與三角形相似的綜合問題,主要考查相似三角形的判定和性質(zhì)的綜合應(yīng)用,三角形和四邊形的面積,二次函數(shù)的最值問題的應(yīng)用,函數(shù)的交點等知識,本題比較復(fù)雜,注意用t表示出線段長度,再利用相似即可找到線段之間的關(guān)系,代入可解決問題.
點擊復(fù)制文檔內(nèi)容
范文總結(jié)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1