freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學(xué)一模試題分類匯編——二次函數(shù)綜合附答案解析(編輯修改稿)

2025-03-30 22:20 本頁面
 

【文章內(nèi)容簡介】 1≤t≤20,∴14+2a≥20得a≥3時(shí),P1隨t的增大而增大,又∵a<4,∴3≤a<4.點(diǎn)睛:解答本題的關(guān)鍵是要分析題意根據(jù)實(shí)際意義準(zhǔn)確的求出解析式,并會根據(jù)圖示得出所需要的信息.同時(shí)注意要根據(jù)實(shí)際意義準(zhǔn)確的找到不等關(guān)系,利用不等式組求解.7.如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(3,0),與y軸交于點(diǎn)C(0,3),點(diǎn)D是拋物線的頂點(diǎn),過點(diǎn)D作x軸的垂線,垂足為E,連接DB.(1)求此拋物線的解析式及頂點(diǎn)D的坐標(biāo);(2)點(diǎn)M是拋物線上的動點(diǎn),設(shè)點(diǎn)M的橫坐標(biāo)為m.①當(dāng)∠MBA=∠BDE時(shí),求點(diǎn)M的坐標(biāo);②過點(diǎn)M作MN∥x軸,與拋物線交于點(diǎn)N,P為x軸上一點(diǎn),連接PM,PN,將△PMN沿著MN翻折,得△QMN,若四邊形MPNQ恰好為正方形,直接寫出m的值.【答案】(1)(1,4)(2)①點(diǎn)M坐標(biāo)(﹣,)或(﹣,﹣);②m的值為 或【解析】【分析】(1)利用待定系數(shù)法即可解決問題;(2)①根據(jù)tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,構(gòu)建方程即可解決問題;②因?yàn)辄c(diǎn)M、N關(guān)于拋物線的對稱軸對稱,四邊形MPNQ是正方形,推出點(diǎn)P是拋物線的對稱軸與x軸的交點(diǎn),即OP=1,易證GM=GP,即|m2+2m+3|=|1m|,解方程即可解決問題.【詳解】(1)把點(diǎn)B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴拋物線的解析式為y=﹣x2+2x+3,∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴頂點(diǎn)D坐標(biāo)(1,4);(2)①作MG⊥x軸于G,連接BM.則∠MGB=90176。,設(shè)M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA=,∵DE⊥x軸,D(1,4),∴∠DEB=90176。,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=,當(dāng)點(diǎn)M在x軸上方時(shí), =,解得m=﹣或3(舍棄),∴M(﹣,),當(dāng)點(diǎn)M在x軸下方時(shí), =,解得m=﹣或m=3(舍棄),∴點(diǎn)M(﹣,﹣),綜上所述,滿足條件的點(diǎn)M坐標(biāo)(﹣,)或(﹣,﹣);②如圖中,∵M(jìn)N∥x軸,∴點(diǎn)M、N關(guān)于拋物線的對稱軸對稱,∵四邊形MPNQ是正方形,∴點(diǎn)P是拋物線的對稱軸與x軸的交點(diǎn),即OP=1,易證GM=GP,即|﹣m2+2m+3|=|1﹣m|,當(dāng)﹣m2+2m+3=1﹣m時(shí),解得m=,當(dāng)﹣m2+2m+3=m﹣1時(shí),解得m=,∴滿足條件的m的值為或.【點(diǎn)睛】本題考查二次函數(shù)綜合題、銳角三角函數(shù)、正方形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考壓軸題.8.在平面直角坐標(biāo)系xOy中,拋物線y=x2﹣2x+a﹣3,當(dāng)a=0時(shí),拋物線與y軸交于點(diǎn)A,將點(diǎn)A向右平移4個(gè)單位長度,得到點(diǎn)B.(1)求點(diǎn)B的坐標(biāo);(2)將拋物線在直線y=a上方的部分沿直線y=a翻折,圖象的其他部分保持不變,得到一個(gè)新的圖象,記為圖形M,若圖形M與線段AB恰有兩個(gè)公共點(diǎn),結(jié)合函數(shù)的圖象,求a的取值范圍.【答案】(1)A(0,﹣3),B(4,﹣3);(2)﹣3<a≤0;【解析】【分析】(1)由題意直接可求A,根據(jù)平移點(diǎn)的特點(diǎn)求B;(2)圖形M與線段AB恰有兩個(gè)公共點(diǎn),y=a要在AB線段的上方,當(dāng)函數(shù)經(jīng)過點(diǎn)A時(shí),AB與函數(shù)兩個(gè)交點(diǎn)的臨界點(diǎn);【詳解】解:(1)A(0,﹣3),B(4,﹣3);(2)當(dāng)函數(shù)經(jīng)過點(diǎn)A時(shí),a=0,∵圖形M與線段AB恰有兩個(gè)公共點(diǎn),∴y=a要在AB線段的上方,∴a>﹣3∴﹣3<a≤0;【點(diǎn)睛】本題二次函數(shù)的圖象及性質(zhì);熟練掌握二次函數(shù)圖象的特點(diǎn),函數(shù)與線段相交的交點(diǎn)情況是解題的關(guān)鍵.9.在平面直角坐標(biāo)系中,我們定義直線y=axa為拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)的“衍生直線”;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其“衍生三角形”.已知拋物線與其“衍生直線”交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C.(1)填空:該拋物線的“衍生直線”的解析式為 ,點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ;(2)如圖,點(diǎn)M為線段CB上一動點(diǎn),將△ACM以AM所在直線為對稱軸翻折,點(diǎn)C的對稱點(diǎn)為N,若△AMN為該拋物線的“衍生三角形”,求點(diǎn)N的坐標(biāo);(3)當(dāng)點(diǎn)E在拋物線的對稱軸上運(yùn)動時(shí),在該拋物線的“衍生直線”上,是否存在點(diǎn)F,使得以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請直接寫出點(diǎn)E、F的坐標(biāo);若不存在,請說明理由.【答案】(1);(2,);(1,0);(2)N點(diǎn)的坐標(biāo)為(0,),(0,);(3)E(1,)、F(0,)或E(1,),F(xiàn)(4,)【解析】【分析】(1)由拋物線的“衍生直線”知道二次函數(shù)解析式的a即可;(2)過A作AD⊥y軸于點(diǎn)D,則可知AN=AC,結(jié)合A點(diǎn)坐標(biāo),則可求出ON的長,可求出N點(diǎn)的坐標(biāo);(3)分別討論當(dāng)AC為平行四邊形的邊時(shí),當(dāng)AC為平行四邊形的對角線時(shí),求出滿足條件的E、F坐標(biāo)即可【詳解】(1)∵,a=,則拋物線的“衍生直線”的解析式為;聯(lián)立兩解析式求交點(diǎn),解得或,∴A(2,),B(1,0);(2)如圖1,過A作AD⊥y軸于點(diǎn)D,在中,令y=0可求得x= 3或x=1,∴C(3,0),且A(2,),∴AC=由翻折的性質(zhì)可知AN=AC=,∵△AMN為該拋物線的“衍生三角形”,∴N在y軸上,且AD=2,在Rt△AND中,由勾股定理可得DN=,∵OD=,∴ON=或ON=,∴N點(diǎn)的坐標(biāo)為(0,),(0,);(3)①當(dāng)AC為平行四邊形的邊時(shí),如圖2 ,過F作對稱軸的垂線FH,過A作AK⊥x軸于點(diǎn)K,則有AC∥EF且AC=EF,∴∠ ACK=∠ EFH,在△ ACK和△ EFH中∴△ ACK≌△ EFH,∴FH=CK=1,HE=AK=,∵拋物線的對稱軸為x=1,∴ F點(diǎn)的橫坐標(biāo)為0或2,∵點(diǎn)F在直線AB上,∴當(dāng)F點(diǎn)的橫坐標(biāo)為0時(shí),則F(0,),此時(shí)點(diǎn)E在直線AB下方,∴E到y(tǒng)軸的距離為EHOF==,即E的縱坐標(biāo)為,∴ E(1,);當(dāng)F點(diǎn)的橫坐標(biāo)為2時(shí),則F與A重合,不合題意,舍去;②當(dāng)AC為平行四邊形的對角線時(shí),∵ C(3,0),且A(2,),∴線段AC的中點(diǎn)坐標(biāo)為(, ),設(shè)E(1,t),F(xiàn)(x,y),則x1=2(),y+t=,∴x= 4,y=t,t=(4)+,解得t=,∴E(1,),F(xiàn)(4,);綜上可知存在滿足條件的點(diǎn)F,此時(shí)E(1,)、(0,)或E(1,),F(xiàn)(4,)【點(diǎn)睛】本題是對二次函數(shù)的綜合知識考查,熟練掌握二次函數(shù),幾何圖形及輔助線方法是解決本題的關(guān)鍵,屬于壓軸題10.如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣3(a≠0)與x軸交于點(diǎn)A(﹣2,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)C.(1)求拋物線的解析式;(2)點(diǎn)P從A點(diǎn)出發(fā),在線段
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1