【摘要】*一元二次方程的根與系數(shù)的關系問題1請寫出一元二次方程的一般形式和求根公式.ax2+bx+c=0一、復習導入242bbacxa????問題2完成下面的表格.方程x1x2x1+x2x1x2x2-2x-3=0x2-5x+6=0x²
2025-06-18 08:41
【摘要】*一元二次方程的根與系數(shù)的關系ax2+bx+c=0(a≠0)的兩根x1,x2與系數(shù)a,b,c之間的關系是x1+x2=,x1x2=.2.(2022·新疆中考)已知關于x的方程x2+x-a=0的一個根為2,則另一個根是()x1,x2是方程x2-x-3=0的兩根,則x1+x2=,x1x2=
2025-06-20 15:59
【摘要】第二十一章一元二次方程解一元二次方程A知識要點分類練B規(guī)律方法綜合練第二十一章一元二次方程C拓廣探究創(chuàng)新練*一元二次方程的根與系數(shù)的關系A知識要點分類練*一元二次方程的根與系數(shù)的關系知識點1直接利用根與系數(shù)的關系求兩根之和與兩根之積1
2025-06-16 12:04
【摘要】一元二次方程正方形桌面的面積是2m2.問:正方形的邊長與面積之間有何數(shù)量關系?你用什么樣的數(shù)學式子來描述它們之間的關系?設正方形桌面的邊長是xm,可得:x2=2.【問題情境】問題1:如圖,矩形花圃一面靠墻,另外三面所圍的柵欄的總長度是19m,花圃的面積是24m2.問:矩形花圃的寬與面積之間有何關系?你用
2024-12-28 00:07
【摘要】第2課時應用一元二次方程學習目標:1.會用一元二次方程解決銷量隨銷售單價變化而變化的市場營銷類應用題.2.通過列方程解應用題,進一步認識方程模型的重要性,提高邏輯思維能力和分析問題、解決問題的能力.學習重點:會用一元二次方程求解利潤類問題.學習難點:將實際問題抽象為一元二次方程的模型,尋找等量關系
2024-11-22 01:19
【摘要】一元二次方程單元測驗一、選擇題:(每小題3分,共36分)1.下列方程中是一元二次方程的是 ()(A) (B)(C) (D)2.方程的根為()(A) (B)(C) (D)3.解方程7(8x+3)=6(8x+3)2的最佳方法應選擇()(A)因式分解法 (B)直接開平方法 (C)配方法 (D)公式法4.
2025-03-24 05:32
【摘要】第二十一章一元二次方程解一元二次方程總結反思目標突破第二十一章一元二次方程知識目標*一元二次方程的根與系數(shù)的關系知識目標*一元二次方程的根與系數(shù)的關系1.通過求根公式探索并理解根與系數(shù)的關系,會用這個關系求一元二次方程兩個根的和與積或未知系數(shù).2.通過對代數(shù)式的熟練變形,
【摘要】用一元二次方程解決問題一元二次方程的應用課前參與預習內(nèi)容:課本P24問題1,P26問題3、4.知識整理:1、列方程的關鍵是找出相等關系.列一元二次方程解應用題一般有“審、設、列、解、檢驗、答”六個步驟。2、進一步增強實際問題轉化為數(shù)學模型的能力,并能根據(jù)實際情況對方程的根的情況進行討論。嘗試練習:1、用長為100
2024-12-08 21:49
【摘要】九年級數(shù)學(上)二次函數(shù)與一元二次方程1、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=。方程根的情況是:當△﹥0時方程;當△=0時,方程;當△﹤0
2024-11-21 00:07
【摘要】《一元二次方程》說課稿孟軍一、教材分析:一元二次方程是人教版九年級上第二十二章第一節(jié),是中學數(shù)學的主要內(nèi)容,在初中代數(shù)中占有重要的地位.實數(shù)與代數(shù)式的運算、一元一次方程是學習一元二次方程的基礎,通過一元二次方程的學習,可以對上述內(nèi)容加以鞏固.同時,一元二次方程也是以后學習(指數(shù)方程、對數(shù)方程、三角方程以及不等式、函數(shù)、二次曲線等內(nèi)容)的基礎.此外,學習一元二次方程對其他
2025-04-16 12:46
【摘要】一元二次方程講義考點一、概念(1)定義:①只含有一個未知數(shù),并且②未知數(shù)的最高次數(shù)是2,這樣的③整式方程就是一元二次方程。(2)一般表達式:注:當b=0時可化為這是一元二次方程的配方式(3)四個特點:(1)只含有一個未知數(shù);(2)且未知數(shù)次數(shù)最高次數(shù)是2;(3)是整式方程.要判斷一個方程是否為一元二次方程,先看它是否為整式方程,若是,再對它進行整理.如果能整理為的形式,
2025-06-20 16:00