【摘要】中考復(fù)習(xí)準(zhǔn)備好了嗎?陽泉市義井中學(xué)高鐵牛時(shí)刻準(zhǔn)備著!課程標(biāo)準(zhǔn)及學(xué)習(xí)目標(biāo)有的放矢(課標(biāo)要求)(1)方程與方程組①能夠根據(jù)具體問題中的數(shù)量關(guān)系,列出方程,體會(huì)方程是刻畫現(xiàn)實(shí)世界的一個(gè)有效的數(shù)學(xué)模型。②經(jīng)歷用觀察、畫圖或計(jì)算器等手段估計(jì)方程解的過程。[參A例7]③
2024-11-07 02:12
【摘要】均值不等式一、基本知識(shí)梳理:如果a﹑b∈R+,那么叫做這兩個(gè)正數(shù)的算術(shù)平均值.:如果a﹑b∈R+,那么叫做這兩個(gè)正數(shù)的幾何平均值:如果a﹑b∈R,那么a2+b2≥(當(dāng)且僅當(dāng)a=b時(shí),取“=”)均值定理:如果a﹑b∈R+,那么≥(當(dāng)且僅
2025-03-25 00:08
【摘要】第一篇:均值不等式教案3 課題:§:第3課時(shí)授課時(shí)間:授課類型:新授課 【教學(xué)目標(biāo)】 1.知識(shí)與技能:了解均值不等式在證明不等式中的簡單應(yīng)用。 2.過程與方法:培養(yǎng)學(xué)生的探究能力以及分析問題、...
2024-11-05 17:45
【摘要】均值不等式及其應(yīng)用一.均值不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”);若,則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”
【摘要】精品資源均值不等式應(yīng)用(二)教學(xué)目的:要求學(xué)生更熟悉基本不等式和極值定理,從而更熟練地處理一些最值問題。教學(xué)重點(diǎn): 均值不等式應(yīng)用教學(xué)過程:一、復(fù)習(xí):基本不等式、極值定理二、例題:1.求函數(shù)的最大值,下列解法是否正確?為什么?解一:∴解二:當(dāng)即時(shí)答:以上兩種解法均有錯(cuò)誤。解一錯(cuò)在取不到“=”,即不存在使得;解二錯(cuò)在不是定值
2025-06-24 04:36
【摘要】第一篇:2013高考數(shù)學(xué)均值不等式專題 均值不等式歸納總結(jié) ab£(a+b 2)£2a+b 222(當(dāng)且僅當(dāng)a=b時(shí)等號(hào)成立) (1)當(dāng)兩個(gè)正數(shù)的積為定值時(shí),可以求它們的和的最小值,當(dāng)兩個(gè)正...
2025-10-18 07:47
【摘要】第一篇:均值不等式的應(yīng)用策略 龍?jiān)雌诳W(wǎng)://. 均值不等式的應(yīng)用策略 作者:黃秀娟 來源:《數(shù)理化學(xué)習(xí)·高三版》2013年第09期 高中階段常用的不等式主要有以下兩種形式: (1)如果a...
2024-11-05 17:46
【摘要】......一.均值不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”);若,則(當(dāng)且僅
【摘要】第一篇:均值不等式教案2 課題:§課時(shí):第2課時(shí)授課時(shí)間:授課類型:新授課 【教學(xué)目標(biāo)】 1.知識(shí)與技能:利用均值定理求極值與證明。 2.過程與方法:培養(yǎng)學(xué)生的探究能力以及分析問題、解決問題的...
2025-10-18 22:57
【摘要】不等式的證明與解法(復(fù)習(xí)課)1、比較法(1)比較法證明不等式的步驟作差---變形---判斷符號(hào)----得出結(jié)論(2)比較法經(jīng)常證明什么樣的不等式高次整式多項(xiàng)式、所證不等式兩邊有相同或局部相同的部分(3)作差之后變形的思維完全平方、因式積一、不
2024-11-06 21:52
【摘要】函數(shù)法根據(jù)所給不等式的特征,利用函數(shù)的性質(zhì)及函數(shù)圖象來證明不等式成立的方法,稱之為函數(shù)法。荊州師范學(xué)院張軍濤教學(xué)目標(biāo)重點(diǎn)掌握函數(shù)的單調(diào)
2024-11-19 02:58
【摘要】不等式性質(zhì)兩個(gè)實(shí)數(shù)大小的比較ba1ba)2(ba1ba)1(,0b,a???????則若比商法比差法0baba0baba????????對稱性abba???傳遞性cacb,ba????加法單調(diào)性cbcaba?????移項(xiàng)法則bcacba?????乘法
2024-11-22 04:19
【摘要】第一篇: 均值不等式的常見題型 一基本習(xí)題 2、已知正數(shù)a,b滿足ab=4,那么2a+3b的最小值為()A10B12C43D46 3、已知a>0,b>0,a+b=1則11+的取值范圍是()ab...
2025-10-18 08:34
【摘要】精品資源用均值不等式解題的注意點(diǎn)使用算術(shù)與幾何平均值不等式解最值問題時(shí),一定要注意命題成立的條件,切實(shí)牢記“各數(shù)為正、正數(shù)之積或和為定值、等號(hào)成立的條件”這三點(diǎn),以防解題失誤。本文就這三點(diǎn)略舉幾例,供同學(xué)們參考。例1.設(shè)的最值。誤解:由于是定值,所以用均值不等式求得。故y有最小值。辨析:這個(gè)解是錯(cuò)誤的,其根源在于不注意正數(shù)的條件。
2025-03-25 06:05
【摘要】不等式的定義:一般地,用符號(hào)“”、“≥”連接的式子叫做不等式不等式的解集可在數(shù)軸上直觀表示。規(guī)律:大于向箭頭,小于向箭尾,有等號(hào)(≤、≥)畫實(shí)心點(diǎn),無等號(hào)(<、>=畫空心圈。列不等式注意找到問題中不等關(guān)系的詞正數(shù)
2024-11-06 21:53