【摘要】不等式的定義:一般地,用符號“”、“≥”連接的式子叫做不等式不等式的解集可在數(shù)軸上直觀表示。規(guī)律:大于向箭頭,小于向箭尾,有等號(≤、≥)畫實心點,無等號(<、>=畫空心圈。列不等式注意找到問題中不等關(guān)系的詞正數(shù)
2025-10-28 21:53
【摘要】2020年12月13日星期日18:41:23不等式復(fù)習(xí)(一)2020年12月13日星期日18:41:24《不等式》知識結(jié)構(gòu)不等式均值不等式不等式證明不等式解法不等式應(yīng)用不
2025-10-28 21:52
【摘要】喬瑞霞蛟河三中:1.不等式,一元一次不等式2.不等式的解3.不等式的解集4.解一元一次不等式一.基本概念:?不等式的基本性質(zhì)(3條):?1)不等式兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向____.?2)不等式兩邊都乘以(或除以)同一個
2025-08-05 01:06
【摘要】第六章:不等式期末復(fù)習(xí):江蘇省前黃高級中學(xué)高一數(shù)學(xué)組呂楊春第一部分:基本概念1、比較大?。ㄗ鞑睢纸庖蚴健袛喾枺┳ⅲ悍纸庖蚴降讲荒芊纸鉃橹?;判斷符號的時候注意有時候要討論2、不等式的性質(zhì)是證明不等式和解不等式的基礎(chǔ)。不等式的基本性質(zhì)有:1)對稱性:ab?ba;2)
2025-10-31 08:12
【摘要】不等式的性質(zhì)不等式不等式的證明不等式的解法應(yīng)用不等式的性質(zhì)互逆性—ab傳遞性—ab,bc可加性—ab推論移項法則—a+cb同向可加—ab,cd可乘性—ab,推論同向正
2025-07-22 01:43
【摘要】第一篇:均值不等式證明 均值不等式證明 一、已知x,y為正實數(shù),且x+y=1求證 xy+1/xy≥17/ 41=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥ 2當(dāng)且僅當(dāng)xy=...
2025-10-27 18:15
【摘要】第一篇:不等式證明[精選] §14不等式的證明 不等式在數(shù)學(xué)中占有重要地位,由于其證明的困難性和方法的多樣性,,而變形的依據(jù)是不等式的性質(zhì),不等式的性分類羅列如下:不等式的性質(zhì):a3b?a-b0...
2025-10-30 22:00
【摘要】高中數(shù)學(xué)精講精練第六章不等式【知識圖解】【方法點撥】不等式是高中數(shù)學(xué)的重要內(nèi)容之一,不等式的性質(zhì)是解、證不等式的基礎(chǔ),兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)的
2025-08-11 14:54
【摘要】1.(2018?卷Ⅱ)設(shè)函數(shù)f(x)=5?|x+a|?|x?2|(1)???當(dāng)a=1時,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范圍2.(2013?遼寧)已知函數(shù)f(x)=|x﹣a|,其中a>1(1)當(dāng)a=2時,求不等式f(x)≥4﹣|x﹣4|的解集;(2)已知關(guān)
2025-04-17 01:45
【摘要】第一篇:導(dǎo)數(shù)證明不等式 導(dǎo)數(shù)證明不等式 一、當(dāng)x1時,證明不等式xln(x+1) f(x)=x-ln(x+1) f'(x)=1-1/(x+1)=x/(x+1) x1,所以f'(x)0...
2025-10-17 09:50
【摘要】不等式的證明(4)換元法復(fù)習(xí):分析法:一、三角換元注意點:角的范圍與半徑的范圍二、代數(shù)換元代數(shù)換元:主元;均值代換練習(xí)小結(jié):
2025-11-02 02:53
【摘要】第二單元方程(組)與不等式(組)第8課時不等式(組)的解法及不等式的應(yīng)用考點聚焦考點一不等式的有關(guān)概念及性質(zhì)不等關(guān)系同一個數(shù)(或式子)不變同一個正數(shù)不變考點聚焦考點一不等式的有關(guān)概念及性質(zhì)負(fù)數(shù)改變溫馨提示,不等式的解是單獨的未知數(shù)的值,
2025-06-12 13:59
【摘要】第8課時不等式與不等式組基礎(chǔ)自主導(dǎo)學(xué)考點梳理自主測試或????????基礎(chǔ)自主導(dǎo)學(xué)考點梳理自主測試考點二一元一次不等式(組)的解法:只含有一個未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫做一元一次不等式.:去分母、去括號、移項、
2025-06-12 23:40
【摘要】第一篇:證明不等式方法 不等式的證明是高中數(shù)學(xué)的一個難點,題型廣泛,涉及面廣,證法靈活,錯法多種多樣,本節(jié)通這一些實例,歸納整理證明不等式時常用的方法和技巧。1比較法 比較法是證明不等式的最基本方...
2025-10-20 04:53
2025-06-12 23:42