freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

完全平方公式(一)教案5則范文(存儲版)

2024-11-04 22:29上一頁面

下一頁面
  

【正文】 測試下列計(jì)算是否正確,若不正確,請訂正;(1) (1+3a)2=9a26a+1(2) (3x2 )2=9x4(3) (xy+4)2=x2y2+16(4) (a2b2)2=a2b22a2b+4利用乘法公式計(jì)算:(1) (3x+1)2 (2) (a3b)2(3) (2x+ )2 (4) (3m4n)2利用乘法公式計(jì)算:(1) 9992 (2) ()2先化簡,再求值;( m3n)2( m+3n)2+2,其中m=2,n=3五、思維拓展如果x2kx+81是一個(gè)完全平方公式,則k的值是多項(xiàng)式4x2+1加上一個(gè)單項(xiàng)式后,使它能成為一個(gè)整式的完全平方,那么加上的單項(xiàng)式可以是已知(x+y)2=9, (xy)2=5 ,求xy的值x+y=4 ,xy=10 ,那么xy=已知x =4,則x2+ =完全平方公式教案11重點(diǎn)、難點(diǎn)根據(jù)公式的特征及問題的特征選擇適當(dāng)?shù)墓接?jì)算.教學(xué)過程一、議一議(a+b)的正方形面積是多少?、b拍的兩個(gè)正方形面積和是多少?(1)(2)的結(jié)果嗎?:學(xué)生回答(1)(a+b) (2)a +b (3)因?yàn)?a+b) = a +2ab+b ,所以 (a+b) (a +b )=a +2ab+b a b =2ab,即(1)中的正方形面積比(2)中的正方形面積大.二、做一做例1. 利用完全平方式計(jì)算1. 102 。:通過觀察、實(shí)驗(yàn)、歸納、類比、推斷獲得數(shù)學(xué)猜想,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索性和創(chuàng)造性,感受證明的必要性、證明過程的嚴(yán)謹(jǐn)性以及結(jié)論的確定性。6具體教學(xué)過程設(shè)計(jì)如下::[引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類項(xiàng)法則,你會計(jì)算下列各題嗎?(x+3)2=,(x3)2=,這些式子的左邊和右邊有什么規(guī)律?再做幾個(gè)試一試:(2m+3n)2=,(2m3n)2=[學(xué)生回答]分組交流、討論 多項(xiàng)式的結(jié)構(gòu)特點(diǎn)(1)原式的特點(diǎn)。③(2x+3)2=。這一環(huán)節(jié)的目的就是讓學(xué)生的這種錯(cuò)誤或其它錯(cuò)誤充分暴露出來,并讓學(xué)生充分認(rèn)識到自己原有的定式思維是錯(cuò)誤的,為下一步構(gòu)建新的思維模式埋下伏筆.第二環(huán)節(jié):驗(yàn)證(a+2)2=a2–4a+22活動(dòng)內(nèi)容:(a+2)2=(a+2)?(a+2)=a2+2a+2a+22活動(dòng)目的:在前一環(huán)節(jié)已經(jīng)打破了學(xué)生的原有的思維定式的基礎(chǔ)上,給學(xué)生建立正確的思維方法,避免形成“相異構(gòu)想”.第三環(huán)節(jié):推廣到一般情況,形成公式活動(dòng)內(nèi)容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2活動(dòng)目的:讓學(xué)生經(jīng)歷從特殊到一般的探究過程,體驗(yàn)到發(fā)現(xiàn)的快樂.第四環(huán)節(jié):數(shù)形結(jié)合活動(dòng)內(nèi)容:設(shè)問:在多項(xiàng)式的乘法中,很多公式都都可以用幾何圖形進(jìn)行解釋,那么完全平方公式怎樣用幾何圖形解釋呢?展示動(dòng)畫,用幾何圖形詮釋完全平方公式的幾何意義.學(xué)生思考:還有沒有其它的方法來詮釋完全平方公式?(課后思考)活動(dòng)目的:讓學(xué)生進(jìn)一步認(rèn)識到數(shù)與形都不是孤立存在的,數(shù)與形是可以有機(jī)地結(jié)合在一起,從而發(fā)展學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想.第五環(huán)節(jié):進(jìn)一步拓廣活動(dòng)內(nèi)容:推導(dǎo)兩數(shù)差的完全平方公式:(a–b)2=a2–2ab+b2方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2活動(dòng)目的:讓學(xué)生經(jīng)歷由兩數(shù)和的完全平方公式拓廣到兩數(shù)差的完全平方公式的過程,體會到符號差異帶來的結(jié)果差異,由第二種推導(dǎo)方法體會到兩數(shù)差的完全平方公式是兩數(shù)和的完全平方公式的應(yīng)用.第六環(huán)節(jié):總結(jié)口訣、認(rèn)識特征活動(dòng)內(nèi)容:比較兩個(gè)公式的共同點(diǎn)與不同點(diǎn):(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2特征:①左邊都是一個(gè)二項(xiàng)式的完全平方,兩者僅有一個(gè)符號不同。使學(xué)生知道把完全平方公式反過來就可以得到相應(yīng)的因式分解。y247。230。收獲2:了解了兩數(shù)和與兩數(shù)差的完全平方公式之間的差異。完全平方公式結(jié)構(gòu)的認(rèn)知及正確應(yīng)用.四、教學(xué)設(shè)計(jì)分析本節(jié)課設(shè)計(jì)了十一個(gè)教學(xué)環(huán)節(jié):學(xué)生練習(xí)、暴露問題——驗(yàn)證——推廣到一般情況,形成公式——數(shù)形結(jié)合——進(jìn)一步拓廣——總結(jié)口訣——公式應(yīng)用——學(xué)生反饋——學(xué)生PK——學(xué)生反思——鞏固練習(xí).第一環(huán)節(jié):學(xué)生練習(xí)、暴露問題活動(dòng)內(nèi)容:計(jì)算:(a+2)2設(shè)想學(xué)生的做法有以下幾種可能:①(a+2)2=a2+22②(a+2)2=a2+2a+22③正確做法。[作業(yè)]P34隨堂練習(xí)P36習(xí)題完全平方公式教案13教學(xué)過程一、議一議探索單項(xiàng)式除以單項(xiàng)式法則(出示投影1)計(jì)算下列各題,并說說你的理由 1. x yx , (8m n )(2m n) , (a b c)(3a b).師生共同分析:此題是做除法運(yùn)算,可以從兩方面思考:根據(jù)除法是乘法的逆運(yùn)算,將除法問題轉(zhuǎn)化為乘法問題去解決,即( )x = x y,由單項(xiàng)式乘以單項(xiàng)式法則可得(x y)x = x y,因此,x yx =x y . 另外,根據(jù)同底數(shù)冪的除法法則,由約分也可得 =x :寫出(2)(3)題的結(jié)果. 教師板書: x yx =x y, (8m n )(2m n)=4n , (a b c)(3a b)= a bc師:以上運(yùn)算是單項(xiàng)式除以單項(xiàng)式的運(yùn)算,你能說說如何進(jìn)行單項(xiàng)式除以單項(xiàng)式的運(yùn)算?學(xué)生活動(dòng):小組討論,教師引導(dǎo)學(xué)生從系數(shù)、同底數(shù)冪、只在被除式含有的字母三方面思考,討論充分后,由一名同學(xué)敘述,(投影顯示)單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式。、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:(a+b)2=a2+2ab+b2;(ab)2=a22ab+b2.,解決問題:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)(m+n)2=, (mn)2=,(m+n)2=, (mn)2=,①(x+y)2=?!皢栴}情景—探究交流—得出結(jié)論—強(qiáng)化訓(xùn)練”的模式展開教學(xué)。2教學(xué)目標(biāo):會推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡單的計(jì)算;了解(a+b)2=a2+2ab+b2的幾何背景。完全平方公式的結(jié)構(gòu)特征:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2左邊是 形式,右邊有三項(xiàng),其中兩項(xiàng)是 形式,另一項(xiàng)是注意:公式中字母的含義廣泛,可以是 ,只要題目符合公式的結(jié)構(gòu)特征,就可以運(yùn)用這一公式,可用符號表示為:(□177。即可.證明: ∵OE平分∠AOB,∴∠1=∠AOB,同理∠2=∠BOC,∴∠1+∠2=(∠AOB+∠BOC)=∠AOC=90176。完全平方公式教案8學(xué)習(xí)目標(biāo):會推導(dǎo)完全平方公式,并能用幾何圖形解釋公式。(3a—4b)2等于;答案:9a2—24ab+16b2解析:解答:(3a—4b)2=9a2—24ab+16b2分析:根據(jù)完全平方公式可完成此題。五、鞏固練習(xí):下列各式中哪些可以運(yùn)用完全平方公式計(jì)算。用不同的形式表示實(shí)驗(yàn)田的總面積,并進(jìn)行比較。了解完全平方公式的幾何背景,培養(yǎng)學(xué)生的數(shù)形結(jié)合意識。⑦ (+n)2 =___________。(4)三項(xiàng)與原多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系。(四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價(jià)不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗(yàn)。用標(biāo)準(zhǔn)的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。2。2。(1)a2+8a+16; (2)1-4t+4t2;(3)m2-14m+49; (4)y2+y+1/4。3。答案:1。m+m2)= (4-m)2。1+12=(5x2+1)2。請同學(xué)們用箭頭表示完全平方公式中的a,b與多項(xiàng)式9x2+6xy+y2中的對應(yīng)項(xiàng),其中a=?b=?2ab=?答:完全平方公式為:其中a=3x,b=y,2ab=2(2)不是完全平方式。式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的兩個(gè)公式就是完全平方公式。把下列各式分解因式:(1)ax4-ax2 (2)16m4-n4。理解完全平方式的意義和特點(diǎn),培養(yǎng)學(xué)生的判斷能力。 (4)(a-b)2.由上述計(jì)算,你發(fā)現(xiàn)了什么結(jié)論?二、合作探究探究點(diǎn):完全平方公式【類型一】 直接運(yùn)用完全平方公式進(jìn)行計(jì)算利用完全平方公式計(jì)算:(1)(5-a)2;(2)(-3-4n)2;(3)(-3a+b)2.解析:直接運(yùn)用完全平方公式進(jìn)行計(jì)算即可.解:(1)(5-a)2=25-10a+a2;(2)(-3-4n)2=92+24n+16n2;(3)(-3a+b)2=9a2-6ab+b2.方法總結(jié):完全平方公式:(a177。計(jì)算練習(xí)(1)課本110頁第一題(2) (x6)2 (y-5)2四、課堂小結(jié):應(yīng)用完全平方公式應(yīng)注意什么?在解題過程中要準(zhǔn)確確定a和b,對照公式原形的兩邊, 做到不丟項(xiàng)、不弄錯(cuò)符號、2ab時(shí)不能少乘以2。四、教學(xué)重點(diǎn)難點(diǎn)教學(xué)重點(diǎn)完全平方公式的推導(dǎo)過程;結(jié)構(gòu)特點(diǎn)與公式的應(yīng)用。在此之前,學(xué)生已學(xué)習(xí)了多項(xiàng)式的乘法,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。452與4(5+2):(1)4+5+2=4+(5+2)(2)452=4(5+2)左邊沒括號,右邊有括號,也就是添了括號,?同學(xué)們可不可以總結(jié)出添括號法則來呢? 添括號其實(shí)就是把去括號反過來。231。教學(xué)工具:多媒體。教學(xué)目標(biāo):知識目標(biāo):推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡單的計(jì)算;了解完全平方公式的幾何背景。推廣:計(jì)算(a+b)=_____ ___(ab)=_____(一)得到公式,分析公式結(jié)論:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2 即:首平方,尾平方,首尾兩倍中間放,中間符號看首尾。232。學(xué)生思考,教師點(diǎn)撥。二、學(xué)情分析學(xué)生剛學(xué)過多項(xiàng)式的乘法,已具備學(xué)習(xí)和運(yùn)用完全平方公式的知識結(jié)構(gòu),但是由于學(xué)生初步學(xué)習(xí)乘法公式,認(rèn)清公式結(jié)構(gòu)并不容易,因此教學(xué)時(shí)要循序漸進(jìn)。教學(xué)中逐步設(shè)置疑問,引導(dǎo)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口,積極參與知識全過程。利用助記口訣幫助學(xué)生更加準(zhǔn)確的掌握完全平方公式的特點(diǎn)。26x5,∴+1=177。難點(diǎn):靈活運(yùn)用完全平方公式公解因式。請寫出完全平方公式。問:下列多項(xiàng)式是否為完全平方式?為什么?(1)x2+6x+9; (2)x2+xy+y2;(3)25x4-10x2+1; (4)16a2+1。25x =(5x ) ,1=1 ,10x =2例1 把25x4+10x2+1分解因式。解法1 1- m+ =1-22。(1)不是完全平方式,如果把第二項(xiàng)的“-2x”改為“-4x”,原式就變?yōu)閤2-4x+4,它是完全平方式;或把第三項(xiàng)的“4”改為1,原式就變?yōu)閤2-2x+1,它是完全平方式。首先要觀察、分析和判斷所給出的多項(xiàng)式是否為一個(gè)完全平方式,如果這個(gè)多項(xiàng)式是一個(gè)完全平方式,再運(yùn)用完全平方公式把它進(jìn)行因式分解。3。(1)(mn-1) 2; (2)7am-1(a-1) 2。例1和例2的講解可以在老師的引導(dǎo)下,師生共同分析和解答,使學(xué)生當(dāng)堂能夠掌握運(yùn)用平方公式進(jìn)行完全因式分解的方法。學(xué)習(xí)者對即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。難點(diǎn):會推導(dǎo)完全平方公式教學(xué)過程教學(xué)過程設(shè)計(jì)如下:〈一〉、提出問題[引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類項(xiàng)法則,通過運(yùn)算下列四個(gè)小題,你能總結(jié)出結(jié)果與多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系嗎?(2m+3n)2=_______________,(2m3n)2=______________,(2m3n)2=_______________,(2m+3n)2=_______________。② (yx)2 =_______________。(3)中間項(xiàng)的符號由等號左邊的兩項(xiàng)符號是否相同決定。教學(xué)難點(diǎn):會用完全平方公式進(jìn)行運(yùn)算教學(xué)方法:探索討論、歸納總結(jié)。引導(dǎo)學(xué)生利用幾何圖形來驗(yàn)證兩數(shù)差的完全平方公式。三、學(xué)習(xí)難點(diǎn):理解完全平方公式的結(jié)構(gòu)特征并能靈活應(yīng)用公式進(jìn)行計(jì)算。正方形HCGM的邊長是b,其面積就是 。學(xué)習(xí)過程:(
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1