【摘要】:2baab??復(fù)習引入基本不等式:.)0,0(2????baabba;222abba??講授新課.4,的最值,求是正數(shù)且abbaba??例1.講授新課.4,的最值,求是正數(shù)且abbaba??例1.變式1..42,的最值,求
2024-11-19 18:02
【摘要】:2baab??引入新課提問1:我們把“風車”造型抽象成下圖.在正方形ABCD中有4個全等的直角三角形.設(shè)直角三角形的兩條直角邊的長為a、b,那么正方形的邊長為多少?面積為多少呢?ADCBGEFH引入新課提問1:我們把“風車”造型抽象成下圖.在
2024-11-19 18:20
【摘要】復(fù)習課不等式課時目標,并能解有關(guān)的實際應(yīng)用問題.單的線性規(guī)劃問題的解法..不等式—錯誤!一、選擇題1.設(shè)ab0,則下列不等式中一定成立的是()A.a(chǎn)-b0B.0ab1C.ab<
2024-12-04 23:45
【摘要】第三章不等式不等關(guān)系不等關(guān)系與不等式課時目標.,并能運用這些性質(zhì)解決有關(guān)問題.1.比較實數(shù)a,b的大小(1)文字敘述如果a-b是正數(shù),那么a____b;如果a-b等于____,那么a=b;如果a-b是負數(shù),那么a____b,反之也成立.(2)符號表示
2024-12-05 06:34
【摘要】第3課時一元二次不等式及其解法,掌握一元二次不等式的解法...為促進某品牌彩電的銷售,廠家設(shè)計了兩套降價方案.方案①:先降價x%,再降價x%(x0);方案②:一次性降價2x%,問哪套方案降價幅度大?問題1問題2一個二次解成立的實數(shù)一元二次不等式一般地
2024-11-17 23:14
【摘要】:學案(第一課時)一、學習目標基本不等式:適用條件:二、典型例題例1.(1)已知正數(shù)滿足,則的最小值是.(2)已知正數(shù)滿足,則的最大值是.變式:已知,則的最小值是.(3)在下列條件中,最小值為2的是()A.()B.()
2025-08-17 05:25
【摘要】陜西省咸陽市涇陽縣云陽中學高中數(shù)學導(dǎo)學案北師大版必修5【學習目標】、一元二次方程的聯(lián)系,能概括出解法步驟【學習重點】【考綱要求】會利用數(shù)形結(jié)合的思想求出給定一元二次不等式的解集【學法指導(dǎo)、使用說明】認真閱讀課本75-79頁的內(nèi)容,說出一元二次不等式的一般形式,及解法步驟,
2024-11-19 15:46
【摘要】高一數(shù)學必修一《直線方程導(dǎo)學案》教學目標:1、掌握確定直線位置的幾何要素2、理解傾斜角和斜率的概念,掌握過兩點的直線斜率的計算公式3、能根據(jù)兩條直線的斜率判斷是平行或垂直4、掌握直線方程的三種形式(點斜式、兩點式、一般式),了解斜截式與一次函數(shù)的關(guān)系5、能用解方程組的方法求兩條相交直線的交點坐標6、掌握兩點間的距離公式、點到直線的距離公式,會求兩平行線
2025-06-07 23:17
【摘要】基本不等式的證明(1)教學目標:一、知識與技能1.探索并了解基本不等式的證明過程,體會證明不等式的基本思想方法;2.會用基本不等式解決簡單的最大(?。┲祮栴};3.學會推導(dǎo)并掌握基本不等式,理解這個基本不等式的幾何意義,并掌握定理中的不等號“≥”取等號的條件是:當且僅當這兩個數(shù)相等;4.理解兩個正數(shù)的算術(shù)平均
2024-11-20 01:04
【摘要】第11課時:§基本不等式的證明(2)【三維目標】:一、知識與技能;;,求最值時注意一正二定三相等。;基本不等式在證明題和求最值方面的應(yīng)用。二、過程與方法通過幾個例題的研究,進一步掌握基本不等式2abab??,并會用此定理求某些函數(shù)的最大、最小值。三、情感、
2024-11-20 00:26
【摘要】第一篇:高中數(shù)學基本不等式及其應(yīng)用教案 基本不等式及其應(yīng)用教案 教學目的 (1)使學生掌握基本不等式a2+b2≥2ab(a、b∈R,當且僅當a=b時取“=”號)和a3+b3+c3≥3abc(a、...
2024-10-29 06:13
【摘要】基本不等式的證明(2)教學目標:一、知識與技能1.進一步掌握基本不等式;2.學會推導(dǎo)并掌握均值不等式定理;3.會運用基本不等式求某些函數(shù)的最值,求最值時注意一正二定三等四同.4.使學生能夠運用均值不等式定理來研究函數(shù)的最大值和最小值問題;基本不等式在證明題和求最值方面的應(yīng)用.二、過程與方法通過幾
【摘要】第三章章末檢測(A)(時間:120分鐘滿分:150分)一、選擇題(本大題共12小題,每小題5分,共60分)1.原點和點(1,1)在直線x+y=a兩側(cè),則a的取值范圍是()A.a(chǎn)2B.0a2C.a(chǎn)=0或a=2
2024-12-05 06:44
【摘要】第2課時數(shù)列的函數(shù)特性,能用函數(shù)的觀點研究數(shù)列.,并應(yīng)用單調(diào)性求最大(小)項.n項和公式求出其通項公式.寫出數(shù)列0,2,4,6,8,…的通項公式an=2n-2后,發(fā)現(xiàn)an=2n-2與一次函數(shù)f(x)=2x-2有相似之處,只不過是自變量從x換到了n,數(shù)列也可看成一種函數(shù).問
2024-12-08 02:37
【摘要】均值不等式的應(yīng)用(求最值)回顧一下重要不等式:均值不等式:222abab??(,0)2ababab???幾個重要的變形:2(0,0)ababab????2(,0)2ababab?????????222()(,)22a
2024-11-18 08:48