【摘要】第一篇:高中數(shù)學(xué)基本不等式及其應(yīng)用教案 基本不等式及其應(yīng)用教案 教學(xué)目的 (1)使學(xué)生掌握基本不等式a2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時取“=”號)和a3+b3+c3≥3abc(a、...
2024-10-29 06:13
【摘要】—求函數(shù)的最值1、如果a,b是正數(shù),那么(當(dāng)且僅當(dāng)a=b時取“=”號)(均值不等式)abba??2一、基本不等式回顧ab2)2(ba??2abab??2、公式變形:特別地,a=b=0時也成立(當(dāng)a、b∈R成立嗎?)
2024-11-03 19:19
【摘要】《不等式實際應(yīng)用》第一課時課前熱身1、比較兩實數(shù)大小的常用方法△=b2-4ac△0△=0△0)的圖象ax2+bx+c=0(a0)的根ax2+bx+0(a0)的解集ax2
2025-03-13 05:16
【摘要】高一數(shù)學(xué)集體備課學(xué)案與教學(xué)設(shè)計章節(jié)標(biāo)題第三章不等式基本不等式(1)計劃學(xué)時2學(xué)案作者高考要求掌握基本不等式,并能運用基本不等式解決一些簡單最大(小)值問題;培養(yǎng)學(xué)生探究能力以及分析問題解決問題的能力。三維目標(biāo)1、知識與能力目標(biāo):掌握基本不等式,并能運用基本不等式解決一些簡單問題;培養(yǎng)學(xué)生探究能力以
2024-11-28 14:57
【摘要】本章回顧1.不等式的基本性質(zhì)(1)比較兩個實數(shù)的大小兩個實數(shù)的大小是用實數(shù)的運算性質(zhì)來定義的,有a-b0?ab;a-b=0?a=b;a-b0,則ab1?ab;ab=1?a=b;ab1?ab.(2)不等式
2024-11-19 23:20
【摘要】第三章不等式課題:§不等式與不等關(guān)系第1課時授課類型:新授課【教學(xué)目標(biāo)】1.知識與技能:通過具體情景,感受在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,理解不等式(組)的實際背景,掌握不等式的基本性質(zhì);2.過程與方法:通過解決具體問題,學(xué)會依據(jù)具體問題的實際背景分析問題、解決問題的方法;3.情態(tài)與
2024-11-19 20:24
【摘要】不等式的性質(zhì)不等式不等式的證明不等式的解法應(yīng)用不等式的性質(zhì)互逆性—ab傳遞性—ab,bc可加性—ab推論移項法則—a+cb同向可加—ab,cd可乘性—ab,推論同向正
2025-07-22 01:43
【摘要】不等式和絕對值不等式第一講.,數(shù)學(xué)研究的重要內(nèi)容不等式是式表示這樣的不等關(guān)系人們常用不等上存在的不等關(guān)系來描述客觀事物在數(shù)量輕與重矮、人們常用長與短、高與現(xiàn)實中,,??????不等式一不等式的基本性質(zhì)1:,,.的大小位置關(guān)系來規(guī)定實數(shù)利用數(shù)軸上的點的左右因此可以對應(yīng)數(shù)軸上的點與實數(shù)一一道知我們實數(shù)的大小關(guān)系研究不等式的出
2024-11-18 12:12
【摘要】基本不等式的證明課時目標(biāo);.1.如果a,b∈R,那么a2+b2____2ab(當(dāng)且僅當(dāng)______時取“=”號).2.若a,b都為____數(shù),那么a+b2____ab(當(dāng)且僅當(dāng)a____b時,等號成立),稱上述不等式為______不等式,其中________稱為a,b的算術(shù)平均數(shù),
2024-12-05 10:13
【摘要】3.基本不等式的證明1.(a-b)2≥0?a2+b2≥2ab,那么(a)2+(b)2≥2ab,即a+b2≥ab,當(dāng)且僅當(dāng)a=b時,等號成立.+b2叫做a、b的算術(shù)平均數(shù).3.ab叫做a、b的幾何平均數(shù).4.基本不等式a+b2≥ab,說明兩個正數(shù)的幾何平均數(shù)不大于它們的
2024-12-08 20:20
【摘要】§基本不等式2:2abab??(教學(xué)教案設(shè)計)①各項皆為正數(shù);②和或積為定值;③注意等號成立的條件.利用基本不等式求最值時,要注意條件已知x,y都是正數(shù),P,S是常數(shù).(1)xy=P?x+y≥2P(當(dāng)且僅當(dāng)x=y時,取“=”號).(2)x+
2025-08-05 03:53
【摘要】12不等式的定義:用不等號連接兩個解析式所得的式子,叫做不等式.說明:(1)不等號的種類:>、<、≥(≮)、≤(≯)、≠.(2)解析式是指:代數(shù)式和超越式(包括指數(shù)式、對數(shù)式和三角式等)(3)不等式研究的范圍是實數(shù)集R.3對于任意兩個實數(shù)a、b,在a>b,a=b,a
2024-11-18 12:09
【摘要】3.1不等關(guān)系與不等式3.不等式與大小比較學(xué)習(xí)目標(biāo).2.會用差值法比較兩實數(shù)的大?。n堂互動講練知能優(yōu)化訓(xùn)練3.不等式與大小比較課前自主學(xué)案課前自主學(xué)案溫故夯基1.在三角形中任意兩邊之和_____第三邊,任意兩邊之差_____第三邊.
2025-01-06 16:34
【摘要】基本不等式的應(yīng)用課時目標(biāo);(小)值問題.1.設(shè)x,y為正實數(shù)(1)若x+y=s(和s為定值),則當(dāng)______時,積xy有最____值,且這個值為________.(2)若xy=p(積p為定值),則當(dāng)______時,和x+y有最____值,且這個值為______.2.利用
2024-12-05 10:12
【摘要】基本不等式第2課時高一數(shù)學(xué)必修5第三章《不等式》利用求最值的要點:,,2abababR????(1)最值存在的條件的:一正,二定
2025-08-16 01:28