freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

新人教a版高中數(shù)學(xué)必修423平面向量的基本定理及坐標(biāo)表示2篇(存儲(chǔ)版)

  

【正文】 成平行四邊形四個(gè)頂點(diǎn) . 解:當(dāng)平行四邊形為 ABCD 時(shí),由 DCAB? 得 D1=(2, 2) 當(dāng)平行四邊形為 ACDB 時(shí),得 D2=(4, 6),當(dāng)平行四邊形為 DACB 時(shí),得 D3=(?6, 0) 例 4 已知三個(gè)力 1F (3, 4), 2F (2, ?5), 3F (x, y)的合力 1F + 2F + 3F =0 ,求 3F 的坐標(biāo) . 解:由題設(shè) 1F + 2F + 3F =0 得: (3, 4)+ (2, ?5)+(x, y)=(0, 0) 即:??? ??? ??? 054 023 yx ∴??? ???15yx ∴ 3F (?5, 1) 四、課堂練習(xí) : 1.若 M(3, 2) N(5, 1) 且 21?MP MN , 求 P 點(diǎn)的坐標(biāo) 2.若 A(0, 1), B(1, 2), C(3, 4) , 則 AB ?2BC = . 3.已知:四點(diǎn) A(5, 1), B(3, 4), C(1, 3), D(5, 3) , 求證:四邊形 ABCD是梯形 . 五、小結(jié) (略) 六、課后作業(yè) (略) 七、板書設(shè)計(jì) (略) 八、課后記: 第 6 課時(shí) 167。 平面向量基本定理 教學(xué)目的: ( 1)了解平面向量基本定理; ( 2)理解平面里的任何一個(gè) 向量都可以用兩個(gè)不共線的向量來表示,初步掌握應(yīng)用向量解決實(shí)際問題的重要思想方法; ( 3)能夠在具體問題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底來表達(dá) . 教學(xué)重點(diǎn): 平面向量基本定理 ] 教學(xué)難點(diǎn): 平面向量基本定理的理解與應(yīng)用 . 授課類型: 新授課 教 具 :多媒體、實(shí)物投影儀 教學(xué)過程 : 一、 復(fù)習(xí)引入: 1.實(shí)數(shù)與向量的積:實(shí) 數(shù)λ與向量 a? 的積是一個(gè)向量,記作:λ a? 5.平面向量的坐標(biāo)表示 [] (說明:),( yxa? ,是向量 a 的坐標(biāo)表示,向量多了一種表示法.) 顯然 )0,0(0),1,0(),0,1( ??? ji [] 例 3.如圖,用基底 ji, 分別表示向量 dcba , ,并寫出它們的坐標(biāo). ( 1) |λ a? |=|λ || a? |;( 2)λ 0 時(shí)λ a? 與 a? 方向相同;λ 0時(shí)λ a? 與 a? 方向相反;λ =0 時(shí)λa? =0 ] 2.運(yùn)算定律 結(jié)合律:λ (μa? )=(λ μ)a? ;分配律: (λ +μ)a? =λ a? +μa? , λ (a? +b? )=λ a? +λ b? 3. 向量共線定理 向量 b? 與非零向量 a? 共線的充要條件是:有且只有一個(gè)非零實(shí)數(shù)λ,使b? =λ a? . 二、講解新課: 平面向量基本定理:如果 1e , 2e 是同一平面 內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任一向量 a? ,有且只有一對(duì)實(shí)數(shù)λ 1,λ 2使 a? =λ 1 1e +λ 2 2e . 探究: (1) 我們把不共線向量 e 1 、 e 2 叫做表示這一平面內(nèi)所有向量的一組 基底; (2) 基底不惟一,關(guān)鍵是不共線; (3) 由定理可將任一向量 a 在給出基底 e 1 、 e 2 的條件下進(jìn)行分解; (4) 基底給 定時(shí),分解形式惟一 . λ1, λ2 是被 a? , 1e , 2e 唯一確定的數(shù)量 三、講解范例: 例 1 已知向量 1e , 2e 求作向量 ? 1e +3 2e . 例 2 如圖 ABCD 的兩條對(duì)角線交于點(diǎn) M,且 AB =a? ,AD =b? ,用 a? , b? 表示 MA , MB , MC 和 MD
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1