【摘要】平面向量的坐標(biāo)表示與運(yùn)算OxyijaA(x,y)a1.以原點(diǎn)O為起點(diǎn)作,點(diǎn)A的位置由誰確定?aOA?由a唯一確定2.點(diǎn)A的坐標(biāo)與向量a的坐標(biāo)的關(guān)系?兩者相同向量a坐標(biāo)(x,y)一一對應(yīng)復(fù)習(xí)回顧已知
2025-11-09 12:09
【摘要】平面向量數(shù)量積的坐標(biāo)表示、模、夾角考查知識點(diǎn)及角度難易度及題號基礎(chǔ)中檔稍難向量數(shù)量積的運(yùn)算1、412與模有關(guān)的問題2、59、10向量的夾角與垂直問題3、67、8、111.設(shè)向量a=(1,0),b=??????12,12,則下列結(jié)論中正確的是()A.|a|=|b
2025-11-26 06:47
【摘要】平面向量數(shù)量積的坐標(biāo)表示、模、夾角一、|a2b|≤|a||b|的應(yīng)用若a=(x1,y1),b=(x2,y2),則平面向量的數(shù)量積的性質(zhì)|a2b|≤|a||b|的坐標(biāo)表示為x1x2+y1y2≤2212122222121)(yyxxyxyx????≤(x12+y12)(x22+y22).不等式(x1x2
【摘要】第二章平面向量本章內(nèi)容介紹向量這一概念是由物理學(xué)和工程技術(shù)抽象出來的,是近代數(shù)學(xué)中重要和基本的數(shù)學(xué)概念之一,有深刻的幾何背景,是解決幾何問題的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可轉(zhuǎn)化為向量的加(減)法、數(shù)乘向量、數(shù)量積運(yùn)算,從而把圖形的基本性質(zhì)轉(zhuǎn)化為向量的運(yùn)算體系.向量是溝通代數(shù)、幾何與三角函數(shù)的一種工
2025-11-29 01:51
【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量數(shù)量積的坐標(biāo)表示、模、夾角課時跟蹤檢測新人教A版必修4考查知識點(diǎn)及角度難易度及題號基礎(chǔ)中檔稍難向量數(shù)量積的運(yùn)算1、412與模有關(guān)的問題2、59、10向量的夾角與垂直問題3、67、8、111.設(shè)向量a=(1,0),b=??
2025-11-30 03:41
【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量數(shù)量積的坐標(biāo)表示、模、夾角學(xué)業(yè)達(dá)標(biāo)測試新人教A版必修41.若向量a=(3,m),b=(2,-1),a·b=0,則實(shí)數(shù)m的值為()A.-32C.2D.6解析:a·b=3×2+m×(-1)=6-m=0
【摘要】§2.平面向量共線的坐標(biāo)表示【學(xué)習(xí)目標(biāo)、細(xì)解考綱】1、在理解向量共線的概念的基礎(chǔ)上,學(xué)習(xí)用坐標(biāo)表示向量共線的條件。2、利用向量共線的坐標(biāo)表示解決有關(guān)問題?!局R梳理、雙基再現(xiàn)】1、兩向量平行(共線)的條件若//(0)abb?則存在唯一實(shí)數(shù)使//ab?;反之,存在唯一實(shí)數(shù)?。使//
2025-11-21 13:46
【摘要】平面向量的基本定理及坐標(biāo)表示平面向量基本定理平面向量的正交分解及坐標(biāo)表示問題提出t57301p2???????1.向量加法與減法有哪幾種幾何運(yùn)算法則?λa?(1)|λa|=|λ||a|;(2)λ0時,λa與a方向相同;λ0時,λa與a方向相反;λ=0時
2025-10-31 06:28
【摘要】§2.平面向量的正交分解及坐標(biāo)表示【學(xué)習(xí)目標(biāo)、細(xì)解考綱】1、理解平面向量的正交分解。2、聯(lián)系直角坐標(biāo)系,研究向量正交分解的坐標(biāo)運(yùn)算。【知識梳理、雙基再現(xiàn)】1、平面向量的正交分解把一個向量分解為_____________,叫做把向量正交分解。2、向量的坐標(biāo)表示在平面直角坐標(biāo)系中,分別取與x軸、
2025-11-23 08:37
【摘要】平面向量的實(shí)際背景及基本概念1.下列說法正確的是()A.方向相同或相反的向量是平行向量B.零向量的長度是0C.長度相等的向量叫相等向量D.共線向量是在同一條直線上的向量解析:對A,由于0與任意向量平行,所以A錯誤;對B,零向量的長度是0,正確;對C,長度相等的向量方向不一定相同,故C錯誤;對D,共線向量不一定在同
2025-11-10 20:39
【摘要】平面向量應(yīng)用舉例1.如果一架飛機(jī)向東飛行200km,再向南飛行300km,記飛機(jī)飛行的路程為s,位移為a,那么()A.s>|a|B.s<|a|C.s=|a|D.s與|a|不能比大小解析:s=200+300=500(km),|a|=2020+3002=10013(km),∴s>
2025-11-10 19:36
【摘要】§2.平面向量的基本定理【學(xué)習(xí)目標(biāo)、細(xì)解考綱】;.【知識梳理、雙基再現(xiàn)】:如果1e?,2e?是同一平面內(nèi)兩個的向量,a?是這一平面內(nèi)的任一向量,那么有且只有一對實(shí)數(shù),21,??使。其中,不共線的這兩個向量,1e?2e?叫做表示這一平
2025-11-21 13:51
【摘要】向量的坐標(biāo)表示平面向量基本定理一、填空題1.若e1,e2是平面內(nèi)的一組基底,則下列四組向量能作為平面向量的基底的是________.①e1-e2,e2-e1②2e1+e2,e1+2e2③2e2-3e1,6e1-4e2④e1+e2,e1-e22.下面三種說法中,正確的是________.①一個平面
2025-11-26 10:15
【摘要】第3課時平面向量的數(shù)量積基礎(chǔ)過關(guān)1.兩個向量的夾角:已知兩個非零向量和,過O點(diǎn)作=,=,則∠AOB=θ(0°≤θ≤180°)叫做向量與的.當(dāng)θ=0°時,與;當(dāng)θ=180°時,與;如果與的夾角是90°,我們說與垂直,記作.2.兩個向量的數(shù)量積的定義:已知兩
2025-06-08 00:02
【摘要】學(xué)大教育個性化教學(xué)教案BeijingXueDaCenturyEducationTechnologyLtd.個性化教學(xué)輔導(dǎo)教案學(xué)科:數(shù)學(xué)任課教師:劉興峰授課日期:年月日(星期)姓名任泳琪年級高一性別女授課時間段總課時第課
2025-08-04 16:20