【摘要】向量數(shù)乘運算及其幾何意義什么變化?的長度和方向有向量,并指出相加后和和請作出)()()(aaaaaa?????????????問題什么變化?的長度和方向有向量,并指出相加后和和請作出)()()(aaaaaa?????????????a?問題什么變化?的長度和方向有向量,并指出相加后和
2025-06-05 22:30
【摘要】第3課時平面向量的數(shù)量積基礎(chǔ)過關(guān)1.兩個向量的夾角:已知兩個非零向量和,過O點作=,=,則∠AOB=θ(0°≤θ≤180°)叫做向量與的.當(dāng)θ=0°時,與;當(dāng)θ=180°時,與;如果與的夾角是90°,我們說與垂直,記作.2.兩個向量的數(shù)量積的定義:已知兩
2025-06-08 00:02
【摘要】平面幾何中的向量方法學(xué)習(xí)目標(biāo)、垂直、相等、夾角和距離等問題.——向量法和坐標(biāo)法.,體驗向量在解決幾何問題中的工具作用,培養(yǎng)創(chuàng)新精神.合作學(xué)習(xí)一、設(shè)計問題,創(chuàng)設(shè)情境問題1:若O為△ABC重心,則=.問題2:水渠橫斷面是四邊形ABCD,,且||=||,則這個四邊形為.
2024-11-19 20:38
【摘要】課題平面向量基本定理教學(xué)目標(biāo)知識與技能理解平面向量基本定理的內(nèi)容,了解向量一組基底的含義過程與方法在平面內(nèi),當(dāng)一組基底選定后,會用這組基底來表示其他向量情感態(tài)度價值觀啟發(fā)引導(dǎo),講練結(jié)合重點會應(yīng)用平面向量基本定理解決有關(guān)平面向量的綜合問題難點同上教學(xué)設(shè)
【摘要】課題平面向量數(shù)量積的坐標(biāo)表示、模、夾角教學(xué)目標(biāo)知識與技能理解兩個向量數(shù)量積坐標(biāo)表示的推導(dǎo)過程,過程與方法能根據(jù)向量的坐標(biāo)計算向量的模,情感態(tài)度價值觀并推導(dǎo)平面內(nèi)兩點間的距離公式重點能根據(jù)向量的坐標(biāo)求向量的夾角及判定兩個向量垂直難點能運用數(shù)量積的坐標(biāo)表示進行向量數(shù)量積的運算.
2024-12-05 06:47
【摘要】平面向量應(yīng)用舉例命題方向1向量在平面幾何中的應(yīng)用例1求證:直徑所對的圓周角為直角.[分析]本題實質(zhì)就是證明AB→2BC→=0.[證明]設(shè)AO→=a,OB→=b,則AB→=a+b,OC→=a,BC→=a-b,|a|=|b|.
2024-11-19 19:09
【摘要】第二章平面向量,第一頁,編輯于星期六:點三十三分。,§6平面向量數(shù)量積的坐標(biāo)表示,第二頁,編輯于星期六:點三十三分。,,自主學(xué)習(xí)梳理知識,課前基礎(chǔ)梳理,第三頁,編輯于星期六:點三十三分。,,第四頁,編...
2024-10-22 18:51
【摘要】高中數(shù)學(xué):《平面向量數(shù)量積的物理背景及其含義》課件(新人教A版必修4)平面向量的數(shù)量積的物理背景及其含義目標(biāo)導(dǎo)學(xué):1、能運用數(shù)量積表示兩個向量的夾角,計算向量的長度;2、會用數(shù)量積判斷兩個平面向量的垂直關(guān)系。向量的夾角:已知兩個非零向量和,作,
2025-07-20 04:53
【摘要】平面向量的坐標(biāo)運算(二)一、填空題1.已知三點A(-1,1),B(0,2),C(2,0),若AB→和CD→是相反向量,則D點坐標(biāo)是________.2.若a=(2cosα,1),b=(sinα,1),且a∥b,則tanα=______.3.已知向量a=(2x+1,4),b=(2-x,3),若
2024-12-05 10:15
【摘要】2.平面向量的坐標(biāo)運算情景:我們知道,在直角坐標(biāo)平面內(nèi),每一個點都可用一對有序?qū)崝?shù)(即它的坐標(biāo))表示,如點A(x,y)等.思考:對于每一個向量如何表示?若知道平面向量的坐標(biāo),應(yīng)如何進行運算?1.兩個向量和的坐標(biāo)等于________________________________.即若a=(x1,y1),b
2024-12-09 03:42
【摘要】平面向量數(shù)量積的物理背景及其含義一般地,實數(shù)λ與向量a的積是一個向量,記作λa,它的長度和方向規(guī)定如下:(1)|λa|=|λ||a|(2)當(dāng)λ0時,λa的方向與a方向相同;當(dāng)λ0時,λa的方向與a方向相反;特別地,當(dāng)λ=0或a=0時,λa=0設(shè)a,
2025-06-05 22:21
【摘要】2020/12/24向量的加法看書P80~83(限時6分鐘)學(xué)習(xí)目標(biāo):通過實例,掌握向量的加法運算及理解其幾何意義。熟練運用加法的“三角形法則”和“平行四邊形”法則2020/12/24由于大陸和臺灣沒有直航,因此要從臺灣去上海探親,乘飛機要先從臺北到香港,再從香港到上海,這兩次位移
2024-11-17 11:59
【摘要】平面向量應(yīng)用舉例平面幾何中的向量方法問題提出,使得向量可以進行線性運算和數(shù)量積運算,并具有鮮明的幾何背景,從而溝通了平面向量與平面幾何的內(nèi)在聯(lián)系,在某種條件下,平面向量與平面幾何可以相互轉(zhuǎn)化.、垂直、夾角、距離、全等、相似等,是平面幾何中常見的問題,而這些問題都可以由向量的線性運算及數(shù)量積表示出
2024-11-18 12:17
【摘要】平面向量數(shù)量積的坐標(biāo)表示、模、夾角考查知識點及角度難易度及題號基礎(chǔ)中檔稍難向量數(shù)量積的運算1、412與模有關(guān)的問題2、59、10向量的夾角與垂直問題3、67、8、111.設(shè)向量a=(1,0),b=??????12,12,則下列結(jié)論中正確的是()A.|a|=|b
【摘要】平面向量數(shù)量積的坐標(biāo)表示、模、夾角一、|a2b|≤|a||b|的應(yīng)用若a=(x1,y1),b=(x2,y2),則平面向量的數(shù)量積的性質(zhì)|a2b|≤|a||b|的坐標(biāo)表示為x1x2+y1y2≤2212122222121)(yyxxyxyx????≤(x12+y12)(x22+y22).不等式(x1x2