【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)新人教A版必修4考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難向量在物理中的應(yīng)用1、3、59向量在幾何中的應(yīng)用6、7、10綜合運(yùn)用2、48111.若向量OF1→=(1,1),OF2→=(-3,-2)分別表示兩個(gè)力F1,F(xiàn)2,則|F
2024-12-08 07:03
【摘要】第一頁,編輯于星期六:點(diǎn)三十三分。,2.4平面向量的數(shù)量積2.4.2平面向量數(shù)量積的坐標(biāo)表示、模、夾角,第二頁,編輯于星期六:點(diǎn)三十三分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點(diǎn)三...
2025-10-13 18:49
【摘要】平面向量數(shù)量積的物理背景及其含義學(xué)習(xí)目標(biāo):1.了解平面向量數(shù)量積的物理背景,即物體在力F的作用下產(chǎn)生位移s所做的功.2.掌握平面向量數(shù)量積的定義和運(yùn)算律,理解其幾何意義.3.會(huì)用兩個(gè)向量的數(shù)量積求兩個(gè)向量的夾角以及判斷兩個(gè)向量是否垂直.學(xué)習(xí)重點(diǎn):向量的數(shù)量積是一種新的乘法,和向量的線性運(yùn)算有著顯著的區(qū)
2024-12-05 06:47
【摘要】平面向量數(shù)量積的物理背景及其含義【學(xué)習(xí)要求】1.掌握平面向量數(shù)量積的運(yùn)算律及常用的公式.2.會(huì)利用向量數(shù)量積的有關(guān)運(yùn)算律進(jìn)行計(jì)算或證明.學(xué)習(xí)重點(diǎn):面向量數(shù)量積的運(yùn)算律及常用的公式學(xué)習(xí)難點(diǎn):利用向量數(shù)量積的有關(guān)運(yùn)算律進(jìn)行計(jì)算或證明.【學(xué)法指導(dǎo)】引進(jìn)向量的數(shù)量積以后,考察一下這種運(yùn)算的運(yùn)算律是非常必要的.向量a、b的數(shù)量積a
【摘要】第二章平面向量平面向量的基本定理及坐標(biāo)表示1.掌握平面向量基本定理并能熟練應(yīng)用.2.掌握平面向量的坐標(biāo)運(yùn)算.3.理解用坐標(biāo)表示平面向量共線的條件及判斷向量是否共線.1.已知e1、e2是表示平面內(nèi)所有向量的一組基底,則下列各組向量中,不能作為平面向量一組基底的是()A.e1+e2和e1-e2
2024-11-19 17:33
【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量基本定理學(xué)業(yè)達(dá)標(biāo)測(cè)試新人教A版必修41.設(shè)O點(diǎn)是平行四邊形ABCD兩對(duì)角線的交點(diǎn),下列向量組中可作為這個(gè)平行四邊形所在平面上表示其他所有向量的基底的是()①AD→與AB→;②DA→與BC→;③CA→與DC→;④OD→與OB→.A.①②B.①③
2024-12-08 13:12
【摘要】階段質(zhì)量評(píng)估(二)平面向量本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,共150分,考試時(shí)間120分鐘.第Ⅰ卷(選擇題)一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1.下列量不是向量的是()A.力B.速
2024-12-08 07:02
【摘要】《平面向量共線的坐標(biāo)表示》說課稿【教材分析】(一)地位和作用本節(jié)內(nèi)容在教材中啟著向量坐標(biāo)運(yùn)算延伸的作用,它是在學(xué)生對(duì)平面向量的基本定理有了充分的認(rèn)識(shí)和正確的應(yīng)用后產(chǎn)生的,平面向量共線的坐標(biāo)表示則為用“數(shù)”的運(yùn)算處理“形”的問題搭建了橋梁,同時(shí)也為定比分點(diǎn)坐標(biāo)公式和中點(diǎn)坐標(biāo)公式的推導(dǎo)奠定了基礎(chǔ);向量共線的坐標(biāo)表示,對(duì)立體幾何教材也有著深遠(yuǎn)的意義,可使空間結(jié)構(gòu)系統(tǒng)地代數(shù)化
2025-08-07 15:05
【摘要】2.平面向量的坐標(biāo)運(yùn)算情景:我們知道,在直角坐標(biāo)平面內(nèi),每一個(gè)點(diǎn)都可用一對(duì)有序?qū)崝?shù)(即它的坐標(biāo))表示,如點(diǎn)A(x,y)等.思考:對(duì)于每一個(gè)向量如何表示?若知道平面向量的坐標(biāo),應(yīng)如何進(jìn)行運(yùn)算?1.兩個(gè)向量和的坐標(biāo)等于________________________________.即若a=(x1,y1),b
2024-12-09 03:42
【摘要】平面向量數(shù)量積的物理背景及其含義一、向量的向量積在物理學(xué)中,由于討論像力矩以及物體繞軸旋轉(zhuǎn)時(shí)的角速度與線速度之間的關(guān)系等這類問題的需要,就必須引進(jìn)兩向量乘法的另一運(yùn)算——向量的向量積.定義如下:兩個(gè)向量a與b的向量積是一個(gè)新的向量c:(1)c的模等于以a及b兩個(gè)向量為邊所作成的平行四邊形的面積;(2)c垂直于
【摘要】§2.平面向量的正交分解及坐標(biāo)表示【學(xué)習(xí)目標(biāo)、細(xì)解考綱】1、理解平面向量的正交分解。2、聯(lián)系直角坐標(biāo)系,研究向量正交分解的坐標(biāo)運(yùn)算?!局R(shí)梳理、雙基再現(xiàn)】1、平面向量的正交分解把一個(gè)向量分解為_____________,叫做把向量正交分解。2、向量的坐標(biāo)表示在平面直角坐標(biāo)系中,分別取與x軸、
2024-12-02 08:37
【摘要】平面向量的數(shù)量積的物理背景及其含義命題方向1計(jì)算向量的數(shù)量積例1已知|a|=4,|b|=5,當(dāng)(1)a∥b;(2)a⊥b;(3)a與b的夾角為60°時(shí),分別求a與b的數(shù)量積.[分析]a∥b時(shí)其夾角為0°或180°,a⊥b時(shí)其夾角為90°,將兩向量的模及夾角代入
【摘要】Oxya引入:,點(diǎn)A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所
2025-06-06 00:43
【摘要】平面與平面垂直的性質(zhì)課堂識(shí)真(預(yù)習(xí)教材P71~P72,找出疑惑之處)問題1:直線與平面垂直的判定定理是____________________________________.問題2:直線與平面垂直的性質(zhì)定理是____________________________________.問題3:兩個(gè)平面垂直的定義是什么?
【摘要】§4平面向量的坐標(biāo)4.1平面向量的坐標(biāo)表示4.2平面向量線性運(yùn)算的坐標(biāo)表示4.3向量平行的坐標(biāo)表示,)1.問題導(dǎo)航(1)相等向量的坐標(biāo)相同嗎?相等向量的起點(diǎn)、終點(diǎn)的坐標(biāo)一定相同嗎?(2)求向量AB→的坐標(biāo)需要知道哪些量?(3)兩個(gè)向量a=(x1,y
2024-11-28 00:13