【摘要】......學習參考 橢 圓典例精析題型一 求橢圓的標準方程【例1】已知點P在以坐標軸為對稱軸的橢圓上,點P到兩焦點的距離分別為和453,過P
2025-04-17 13:13
【摘要】......圓錐曲線離心率專題訓練 1.已知F1,F(xiàn)2是橢圓的兩個焦點,若橢圓上存在點P,使得PF1⊥PF2,則橢圓離心率的取值范圍是( ?。.[,1)B.[,1)C.(0,]D.
2025-03-25 00:04
【摘要】......關于圓錐曲線的中點弦問題直線與圓錐曲線相交所得弦中點問題,是解析幾何中的重要內(nèi)容之一,也是高考的一個熱點問題。這類問題一般有以下三種類型:(1)求中點弦所在直線方程問題;(2)求弦中點的軌跡方程問題;
2025-03-25 00:02
【摘要】第九章 圓錐曲線的離心率問題解析幾何圓錐曲線的離心率問題離心率是圓錐曲線的一個重要幾何性質(zhì),一方面刻畫了橢圓,雙曲線的形狀,另一方面也體現(xiàn)了參數(shù)之間的聯(lián)系。一、基礎知識:1、離心率公式:(其中為圓錐曲線的半焦距)(1)橢圓:(2)雙曲線:2、圓錐曲線中的幾
【摘要】山東高考解析幾何題的推廣及背景溯源2011年高考山東理科第22題,是一道以橢圓為背景考查定值問題、最值問題和存在性問題的解析幾何壓軸題,重點考查推理運算能力和數(shù)學綜合素質(zhì)。本文筆者嘗試對該題的結論作一般化推廣,并對其背景作深度挖掘和溯源解析,與讀者交流。?題目已知直線與橢圓交于兩不同點,且面積,其中為坐標原點。(Ⅰ)證明和均為定值;(Ⅱ)設線段的中點為,求的最大值;(Ⅲ)
2025-07-25 00:15
【摘要】《圓錐曲線與方程》起始課湖北省荊門市龍泉中學葉俊杰《圓錐曲線與方程》起始課荊門市龍泉中學葉俊杰我們知道,用一個垂直于圓錐的軸的平面截圓錐,截口曲線(截面與圓錐側(cè)面的交線)是一個圓.如果改變平面與圓錐軸線的夾角,會得到什么圖形呢?如圖,用一個不垂直于圓錐的軸的平面截圓錐,當截面與圓錐的
2025-08-05 04:44
【摘要】怎樣學好圓錐曲線(解析幾何的高考熱點與例題解析),從數(shù)學家笛卡爾開創(chuàng)了坐標系那天就已經(jīng)開始.高考中它依然是重點,主客觀題必不可少,易、中、:、雙曲線、,高考中的題目都涉及到這些內(nèi)容.,:定義法、直接法、待定系數(shù)法、相關點法、參數(shù)法等.、線段的中點、弦長、垂直問題,.、方法進行歸納提煉,達到優(yōu)化解題思維、簡化解題過程.(1)方程思想解析幾何的題目大部分都以方程形式給
2025-07-24 02:16
【摘要】義龍一中2015-2016學年度期末圓錐曲線復習卷學校:___________姓名:___________班級:___________考號:___________一、選擇題(每小題5分,一共60分)1.已知橢圓的一個焦點為F(0,1),離心率,則該橢圓的標準方程為()A.B.C.D.2.已知橢圓的長軸在軸上,且焦距為4
2025-08-05 04:46
【摘要】星動力教育內(nèi)部資料星動力教育上課資料出題人:江師我不是想要,是一定要!沒有傘的孩子,必須努力奔跑!別在最該奮斗的年紀,選擇了安逸!!橢圓歷年高考考點梳理1、橢圓的概念2、橢圓的標準方程及其幾何性質(zhì)核心考點一 橢圓的定義及標準方程1、橢圓的焦距是2,則m的值是()A.5
2025-03-25 00:03
【摘要】......橢圓中的一組“定值”命題圓錐曲線中的有關“定值”問題,是高考命題的一個熱點,也是同學們學習中的一個難點。筆者在長時間的教學實踐中,以橢圓為載體,探索總結出了橢圓中一組“定值”的命題,當然屬于瀚宇之探微,現(xiàn)與同學們
2025-06-22 15:52
【摘要】WORD資料可編輯圓錐曲線光學性質(zhì)的證明及應用初探一、圓錐曲線的光學性質(zhì)1.1 橢圓的光學性質(zhì):從橢圓一個焦點發(fā)出的光,經(jīng)過橢圓反射后,反射光線都匯聚到橢圓的另一個焦點上;()橢圓的這種光學特性,常被用來設計一些照明設備或聚熱裝置.例如在處放置一個熱源,那
2025-06-22 16:01
【摘要】......圓錐曲線練習題(文)第I卷(選擇題)一、選擇題1.雙曲線的漸近線方程是A.B.C.D.2.已知P是以F1、F2為焦點的雙曲線上一點,若,則三角形的面積為()
【摘要】圓錐曲線過定點問題一、小題自測1.無論取任何實數(shù),直線必經(jīng)過一個定點,則這個定點的坐標為.2.已知直線;圓,則直線與圓的位置關系為.二、幾個常見結論:滿足一定條件的曲線上兩點連結所得的直線過定點或滿足一定條件的曲線過定點,這構成了過定點問題。1、過定點模型:是圓錐曲線上的兩動點,是一定點,其
【摘要】圓錐曲線復習(二)數(shù)學高二年級例1已知雙曲線的中心在原點,且一個焦點為F,直線與其相交于M、N兩點,MN中點的橫坐標為,則此雙曲線的方程是______.解:解得所求雙曲線方程例2橢圓
2024-11-06 23:19
【摘要】圓錐曲線復習(一)數(shù)學高二年級例1已知圓C:(x-a)2+(y-2)2=4及直線l:x-y+3=0,當直線l被圓C截得的弦長為時,則a=________.解出解:由平面幾何知:圓心到直線的距離為1,由點到直線的距離公式得CBAD例2已知拋物線
2024-11-06 19:11