freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

人教版八年級下冊數(shù)學(xué)說課稿第十七章勾股定理-免費閱讀

2024-11-04 17:12 上一頁面

下一頁面
  

【正文】 把三角形有一個直角“形”的特點轉(zhuǎn)化為三邊之間的“數(shù)”的關(guān)系,是數(shù)形結(jié)合的典范;把探求邊的關(guān)系轉(zhuǎn)化為探求面積的關(guān)系,將邊不在格線上的圖形轉(zhuǎn)化為可計算的格點圖形,是轉(zhuǎn)化思想的體現(xiàn);先探求特殊的直角三角形的三邊關(guān)系,再猜測一般直角三角形的三邊關(guān)系,再解決一些特殊直角三角形的問題,這是特殊——一般——特殊的思想。求甲巡邏艇的航向.【答案】解:由題意可知:AC=1206=12,BC=506=5,122+52==13,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90176。AB=5000米,AC=4800米.由勾股定理,得AB2=AC2+BC2,即50002=BC2+48002,所以BC=1400米.飛機飛行1400米用了10秒,那么它1小時飛行的距離為1400660=504000(米)=504(千米),即飛機飛行的速度為504千米/時.【例2】在平靜的湖面上,有一棵水草,它高出水面3分米,一陣風(fēng)吹來,水草被吹到一邊,草尖齊至水面,已知水草移動的水平距離為6分米,問這里的水深是多少?解:根據(jù)題意,得到上圖,其中D是無風(fēng)時水草的最高點,BC為湖面,AB是一陣風(fēng)吹過水草的位置,CD=3分米,CB=6分米,AD=AB,BC⊥AD,所以在Rt△ACB中,AB2=AC2+BC2,即(AC+3)2=AC2+62,AC2+6AC+9=AC2+36,∴6AC=27,AC=,.【例3】在數(shù)軸上作出表示的點.解:以為長的邊可看作兩直角邊分別為4和1的直角三角形的斜邊,因此,在數(shù)軸上畫出表示的點,如下圖:師生行為:由學(xué)生獨立思考完成,教師巡視指導(dǎo).此活動中,教師應(yīng)重點關(guān)注以下兩個方面:①學(xué)生能否積極主動地思考問題;②能否找到斜邊為,另外兩條直角邊為整數(shù)的直角三角形.三、課堂小結(jié)1.進(jìn)一步鞏固、掌握并熟練運用勾股定理解決直角三角形問題.2.你對本節(jié)內(nèi)容有哪些認(rèn)識?會利用勾股定理得到一些無理數(shù),并理解數(shù)軸上的點與實數(shù)一一對應(yīng).本節(jié)課的教學(xué)中,在培養(yǎng)邏輯推理的能力方面,做了認(rèn)真的考慮和精心的設(shè)計,把推理證明作為學(xué)生觀察、實驗、探究得出結(jié)論的自然延續(xù),注重數(shù)學(xué)與生活的聯(lián)系,從學(xué)生的認(rèn)知規(guī)律和接受水平出發(fā),這些理念貫徹到課堂教學(xué)當(dāng)中,很好地激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)了學(xué)生善于提出問題、敢于提出問題、解決問題的能力. 勾股定理的逆定理第1課時 勾股定理的逆定理(1)1.掌握直角三角形的判別條件.2.熟記一些勾股數(shù).3.掌握勾股定理的逆定理的探究方法.重點探究勾股定理的逆定理,理解并掌握互逆命題、原命題、逆命題的有關(guān)概念及關(guān)系.難點歸納猜想出命題2的結(jié)論.一、復(fù)習(xí)導(dǎo)入活動探究(1)總結(jié)直角三角形有哪些性質(zhì);(2)一個三角形滿足什么條件時才能是直角三角形?生:直角三角形有如下性質(zhì):(1)有一個角是直角;(2)兩個銳角互余;(3)兩直角邊的平方和等于斜邊的平方;(4)在含30176。c=10,a∶b=3∶4,則a=________,b=________;(4)一個直角三角形的三邊為三個連續(xù)偶數(shù),則它的三邊長分別為________;(5)已知等邊三角形的邊長為2cm,則它的高為________cm,面積為________cm2.【答案】(1)17(2)(3)6 8(4)6,8,10(5)【例2】已知直角三角形的兩邊長分別為5和12,求第三邊.分析:已知兩邊中,較大邊12可能是直角邊,也可能是斜邊,因此應(yīng)分兩種情況分別進(jìn)行計算.讓學(xué)生知道考慮問題要全面,體會分類討論思想.【答案】或13三、鞏固練習(xí)填空題.在Rt△ABC中,∠C=90176。(六)板書設(shè)計,明確新知這是我本節(jié)課的板書設(shè)計,它分為三塊:一塊是拼圖方法,一塊是勾股定理;一塊是例題解析。培養(yǎng)了學(xué)生的發(fā)散思維、一題多解和探究數(shù)學(xué)問題的能力。教學(xué)手段充分利用多媒體,提高教學(xué)效率,增大教學(xué)容量;通過動態(tài)的演示,激發(fā)學(xué)生學(xué)習(xí)興趣,啟迪學(xué)生思維的發(fā)展;通過直觀教具,進(jìn)行拼圖實驗,調(diào)動學(xué)生學(xué)習(xí)的積極性,培養(yǎng)學(xué)生思維的廣闊性。學(xué)情分析通過前面的學(xué)習(xí),學(xué)生已具備一些平面幾何的知識,能夠進(jìn)行一般的推理和論證,但如何通過拼圖來證明勾股定理,學(xué)生對這種解決問題的途徑還比較陌生,存在一定的難度,因此,我采用直觀教具、多媒體等手段,讓學(xué)生動手、動口、動腦,化難為易,深入淺出,讓學(xué)生感受學(xué)習(xí)知識的樂趣。在本節(jié)課,要創(chuàng)設(shè)問題串,提供學(xué)生活動的方案,讓學(xué)生在活動中思考,在思考中創(chuàng)新,認(rèn)識和理解勾股定理,并能利用勾股定理解決一些簡單的有關(guān)直角三角形的計算問題.二、教學(xué)目標(biāo)讓學(xué)生經(jīng)歷從數(shù)到形再由形到數(shù)的轉(zhuǎn)化過程,經(jīng)歷探求三個正方形面積間的關(guān)系轉(zhuǎn)化為三邊數(shù)量關(guān)系的過程。在變式訓(xùn)練中我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學(xué)生的學(xué)習(xí)過程,隨時反饋,調(diào)節(jié)教法,同時注意加強有針對性的個別指導(dǎo),把發(fā)展學(xué)生的思維和隨時把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。(二)、創(chuàng)設(shè)問題情境一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。知識技能:理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。a組是基本的思維訓(xùn)練項目,全體都要做,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。在同學(xué)們完成證明之后,可讓他們對照課本把證明過程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學(xué)生看書的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。(演示)古代埃及人把一根長繩打上等距離的13個結(jié),然后用樁釘如圖那樣的三角形,便得到一個直角三角形。課標(biāo)要求學(xué)生必須掌握。本例意在滲透實際問題和勾股定理的知識聯(lián)系。:通過利用多媒體課件的演示,更直觀、形象的向?qū)W生介紹用拼接、割補圖形,計算面積的證明方法,使學(xué)生認(rèn)識到證明的必要性、結(jié)論的確定性,感受到前人的偉大和智慧。設(shè)計意圖:組織學(xué)生進(jìn)行討論,在此基礎(chǔ)上教師引導(dǎo)學(xué)生從三邊的平方有何大小關(guān)系入手進(jìn)行觀察。并會簡單應(yīng)用。為了體現(xiàn)數(shù)學(xué)源于生活,數(shù)學(xué)是從人的需要中產(chǎn)生的,學(xué)習(xí)數(shù)學(xué)的目的是為了用數(shù)學(xué)解決實際問題?,F(xiàn)在的學(xué)生已經(jīng)厭倦教師單獨的說教方式,希望教師設(shè)計便于他們進(jìn)行觀察的幾何環(huán)境,給他們自己探索、發(fā)表自己見解和表現(xiàn)自己才華的機會;更希望教師滿足他們的創(chuàng)造愿望。過程與方法方面經(jīng)歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,能感受到數(shù)學(xué)思考過程的條理性,發(fā)展數(shù)學(xué)的說理和簡單的推理的意識,和語言表達(dá)的能力,并體會數(shù)形結(jié)合和特殊到一般的思想方法。六、布置作業(yè):這里布置了“課外活動”,讓學(xué)生采取不同的形式查閱、收集有關(guān)勾股定理的信息進(jìn)行交流,目的是要使全體學(xué)生都能參加,以提高學(xué)生的實踐能力和創(chuàng)新意識。(二)圖片欣賞:通過圖片欣賞,感受數(shù)學(xué)美,。它在數(shù)學(xué)的發(fā)展中起過重要的作用。(三)教學(xué)重點、難點: 教學(xué)重點:探索和掌握勾股定理;教學(xué)難點:用面積法(拼圖法)證明勾股定理二、教法分析:針對八年級學(xué)生的知識結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。接著再展示兩種勾股定理的證明方法,以激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情。而且它在其它自然學(xué)科中也常常用到。二、學(xué)情分析我們班日常經(jīng)常使用多媒體輔助教學(xué)。在教學(xué)過程中展開思維,培養(yǎng)學(xué)生提出問題、分析問題、解決問題的能力,進(jìn)一步體會觀察、類比、分析、從特殊到一般等數(shù)學(xué)思想。從而設(shè)置懸念,激發(fā)學(xué)生的學(xué)習(xí)興趣。提問:等腰直角三角形有這樣的性質(zhì),其他的直角三角形也有這樣的性質(zhì)嗎?(2.)探究二:一般的直角三角形三邊關(guān)系。學(xué)生分組活動,根據(jù)圖形的面積進(jìn)行計算,推導(dǎo)出勾股定理的一般形式:a178。體會數(shù)學(xué)在實際生活中的應(yīng)用。(五)課堂小結(jié)對學(xué)生提問:“通過這節(jié)課的學(xué)習(xí)有什么收獲?”學(xué)生同桌間暢談自己的學(xué)習(xí)感受和體會,并請個別學(xué)生發(fā)言。重點:勾股定理逆定理的應(yīng)用難點:勾股定理逆定理的證明 關(guān)鍵:輔助線的添法探索二、教學(xué)過程:本節(jié)課的設(shè)計原則是:使學(xué)生在動手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過巧妙而自然地在學(xué)生的認(rèn)識結(jié)構(gòu)與幾何知識結(jié)構(gòu)之間筑了一個信息流通渠道,進(jìn)而達(dá)到完善學(xué)生的數(shù)學(xué)認(rèn)識結(jié)構(gòu)的目的。接下來就是利用這個數(shù)學(xué)模型,從理論上證明這個定理。在變式訓(xùn)練中我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學(xué)生的學(xué)習(xí)過程,隨時反饋,調(diào)節(jié)教法,同時注意加強有針對性的個別指導(dǎo),把發(fā)展學(xué)生的思維和隨時把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。(模版二)一、教材分析 :(一)、本節(jié)課在教材中的地位作用“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時在應(yīng)用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一??傊?,本節(jié)課遵循從生動直觀到抽象思維的認(rèn)識規(guī)律,力爭最大限度地調(diào)動學(xué)生學(xué)習(xí)的積極性;力爭把教師教的過程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識的過程;力爭使學(xué)生在獲得知識的過程中得到能力的培養(yǎng)。(四)、組織變式訓(xùn)練本著由淺入深的原則,安排了三個題目。讓學(xué)生的知識形成知識鏈,讓學(xué)生已具有的數(shù)學(xué)思維能力得以充分發(fā)揮和發(fā)展。一、教學(xué)背景分析教材分析本節(jié)課是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,通過2002年國際數(shù)學(xué)家大會的會徽圖案,引入勾股定理,進(jìn)而探索直角三角形三邊的數(shù)量關(guān)系,并應(yīng)用它解決問題。三、教學(xué)策略教法“教必有法,而教無定法”,只有方法恰當(dāng),才會有效。提出猜想:在活動1的基礎(chǔ)上,學(xué)生已發(fā)現(xiàn)一些規(guī)律,進(jìn)一步通過活動2進(jìn)行看一看,填一填,想一想,議一議,做一做,讓學(xué)生感受不只是等腰直角三角形才具有這樣的性質(zhì),使學(xué)生由淺到深,由特殊到一般的提出問題,啟發(fā)學(xué)生得出猜想,直角三角形的兩直角邊的平方和等于斜邊的平方。C組議一議,是一道實際應(yīng)用題型,給學(xué)生施展才智的機會,讓學(xué)生獨立思考后,討論交流得出解決問題的方法,增強了數(shù)學(xué)來源于實踐,反過來又作用于實踐的應(yīng)用意識,達(dá)到了學(xué)以致用的目的。第四篇:八年級數(shù)學(xué)專題勾股定理第十七章 勾股定理17.1 勾股定理第1課時 勾股定理(1)了解勾股定理的發(fā)現(xiàn)過程,理解并掌握勾股定理的內(nèi)容,會用面積法證明勾股定理,能應(yīng)用勾股定理進(jìn)行簡單的計算.重點勾股定理的內(nèi)容和證明及簡單應(yīng)用.難點勾股定理的證明.一、創(chuàng)設(shè)情境,引入新課讓學(xué)生畫一個直角邊分別為3cm和4cm的直角△ABC,用刻度尺量
點擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1