freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

人教版八年級下冊數(shù)學(xué)說課稿第十七章勾股定理(完整版)

2025-11-07 17:12上一頁面

下一頁面
  

【正文】 的補(bǔ)充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過自己親手實(shí)踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題 認(rèn)識問題的好方法,希望同學(xué)在課外練習(xí)時注意用這種方法,這都是教給學(xué)習(xí)方法。從動手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實(shí)現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時學(xué)生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學(xué)生不是被動接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。(一)、復(fù)習(xí)回顧: 復(fù)習(xí)回顧與勾股定理有關(guān)的內(nèi)容,建立新舊知識之間的聯(lián)系。設(shè)計(jì)意圖:讓學(xué)生自己小結(jié),活躍了氣氛,做到全員參與,理清了知識脈絡(luò),強(qiáng)化了重點(diǎn),培養(yǎng)了學(xué)生口頭表達(dá)能力。教學(xué)例1:課本66頁探究1 師生討論、分析: ,所以橫著不能從門框內(nèi)通過. ,所以豎著不能從門框內(nèi)通過. 因?yàn)閷蔷€AC的長度最大,所以只能試試斜著 能否通過. 從而將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題.提示:(1)在圖中構(gòu)造出一個直角三角形。 + b178。在課件中的格點(diǎn)圖形中,利用面積,再次探究直角三角形的三邊關(guān)系。教師引導(dǎo)學(xué)生把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,這其中滲透了一種數(shù)學(xué)思想,對于學(xué)生也是一種挑戰(zhàn),能激發(fā)學(xué)生探究的欲望,自然引出下面的環(huán)節(jié)。借此培養(yǎng)學(xué)生動手、動腦、動口的能力,使學(xué)生真正成為學(xué)習(xí)的主人。經(jīng)過一年多的幾何學(xué)習(xí),學(xué)生對幾何圖形的觀察,幾何圖形的分析能力已初步形成。因此,這節(jié)課有著舉足輕重的地位。(五)應(yīng)用體驗(yàn):通過應(yīng)用勾股定理進(jìn)行簡單的計(jì)算,以加深學(xué)生對勾股定理進(jìn)一步的理解和掌握。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性。第一篇:人教版八年級下冊數(shù)學(xué)說課稿 第十七章 勾股定理(模版一)一、教材分析(一)教材所處的地位及作用:勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問題,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途也很大。三、學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究、合作交流的研討式學(xué)習(xí)方式,獲取知識,掌握方法,借此培養(yǎng)學(xué)生動手、動腦、動口的能力,、教學(xué)過程設(shè)計(jì):(一)回顧交流:通過回顧交流讓學(xué)生復(fù)習(xí)直角三角形的相關(guān)性質(zhì),設(shè)疑其三邊有何關(guān)系,為引入勾股定理奠定基礎(chǔ)。五、反思?xì)w納:引導(dǎo)學(xué)生自己對知識要點(diǎn)和學(xué)習(xí)思路進(jìn)行反思總結(jié),不僅體現(xiàn)了學(xué)生的主體性,而且也調(diào)動了學(xué)生學(xué)習(xí)的積極性。(二)教學(xué)目標(biāo)根據(jù)新課程標(biāo)準(zhǔn)的要求和本課的特點(diǎn),結(jié)合學(xué)生的實(shí)際情況,我確定了本課的教學(xué)目標(biāo):知識與技能方面了解勾股定理的文化背景,經(jīng)歷探索勾股定理的過程,掌握直角三角形三邊之間的數(shù)量關(guān)系,并能簡單應(yīng)用。部分學(xué)生解題思維能力比較高,能夠正確歸納所學(xué)知識,通過學(xué)習(xí)小組討論交流,能夠形成解決問題的思路。五、教學(xué)過程根據(jù)《新課標(biāo)》中“要引導(dǎo)學(xué)生投入到探索與交流的學(xué)習(xí)活動中”的教學(xué)要求,本節(jié)課的教學(xué)過程我是這樣設(shè)計(jì)的:(一)創(chuàng)設(shè)情境,引入新課一個設(shè)計(jì)合理的情境引入可以說在一定程度上決定著學(xué)生能否帶著興趣積極投入到本節(jié)課的學(xué)習(xí)中。緊接著出示本節(jié)課的學(xué)習(xí)目標(biāo):,體驗(yàn)勾股定理的探索過程。學(xué)生自主探究,通過計(jì)算、討論、總結(jié),得出結(jié)論:在直角三角形中,兩直角邊的平方和等于斜邊的平方。 = c178。(連接AC)(2)知道直角△ABC的那條邊?(3)知道直角三角形兩條邊長求第三邊用什么方法呢?設(shè)計(jì)意圖:此題是將實(shí)際為題轉(zhuǎn)化為數(shù)學(xué)問題,從中抽象出Rt△ABC,并求出斜邊A C的長。(模版一)一、教材分析 :(一)、本節(jié)課在教材中的地位作用“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。(二)、創(chuàng)設(shè)問題情境一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。使學(xué)生確實(shí)在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。(六)、作業(yè)布置由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。(二)、教學(xué)目標(biāo):根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實(shí)際我確定了本節(jié)課的教學(xué)目標(biāo)。(一)、復(fù)習(xí)回顧: 復(fù)習(xí)回顧與勾股定理有關(guān)的內(nèi)容,建立新舊知識之間的聯(lián)系。第二題則進(jìn)了一層,字母代替了數(shù)字,繞了一個彎,既可以檢查本課知識,又可以提高靈活運(yùn)用以往知識的能力。把三角形有一個直角“形”的特點(diǎn)轉(zhuǎn)化為三邊之間的“數(shù)”的關(guān)系,是數(shù)形結(jié)合的典范;把探求邊的關(guān)系轉(zhuǎn)化為探求面積的關(guān)系,將邊不在格線上的圖形轉(zhuǎn)化為可計(jì)算的格點(diǎn)圖形,是轉(zhuǎn)化思想的體現(xiàn);先探求特殊的直角三角形的三邊關(guān)系,再猜測一般直角三角形的三邊關(guān)系,再解決一些特殊直角三角形的問題,這是特殊——一般——特殊的思想。勾股定理是直角三角形的一條非常重要的性質(zhì),是幾何中一個非常重要的定理,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,將數(shù)與形密切地聯(lián)系起來,它有著豐富的歷史背景,在理論上占有重要的地位。學(xué)法“授人以魚,不如授人以漁”,通過設(shè)計(jì)問題序列,引導(dǎo)學(xué)生主動探究新知,合作交流,體現(xiàn)學(xué)習(xí)的自主性,從不同層次發(fā)掘不同學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。證明猜想:是不是所有的直角三角形都有這樣的特點(diǎn)呢?這就需要我們對一個一般的直角三角形進(jìn)行證明.通過活動3,我充分引導(dǎo)學(xué)生利用直觀教具,進(jìn)行拼圖實(shí)驗(yàn),在動手操作中放手讓學(xué)生思考、討論、合作、交流,探究解決問題的多種方法,鼓勵創(chuàng)新,小組競賽,引入競爭,我參與討論,與學(xué)生交流,獲取信息,從而有針對性地引導(dǎo)學(xué)生進(jìn)行證法的探究,使學(xué)生創(chuàng)造性地得出拼圖的多種方法,我配以演示,如拼圖拼圖拼圖3,并對學(xué)生的做法給予表揚(yáng),使學(xué)生在學(xué)習(xí)的過程中,感受到自我創(chuàng)造的快樂,從而分散了教學(xué)難點(diǎn),發(fā)現(xiàn)了利用面積相等去證明勾股定理的方法。(五)布置作業(yè),拓展新知讓學(xué)生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流.使本節(jié)知識得到拓展、延伸,培養(yǎng)了學(xué)生能力和思維的深刻性,讓學(xué)生感受數(shù)學(xué)深厚的文化底蘊(yùn)。a=3,b=4,則c=________;(3)在Rt△ABC中,∠C=90176。根據(jù)勾股定理,得BC=,B′C′=.又AB=A′B′,AC=A′C′,∴BC=B′C′,∴△ABC≌△A′B′C′(SSS).師:我們知道數(shù)軸上的點(diǎn)有的表示有理數(shù),有的表示無理數(shù),你能在數(shù)軸上表示出所對應(yīng)的點(diǎn)嗎?教師可指導(dǎo)學(xué)生尋找像長度為,…這樣的包含在直角三角形中的線段.師:由于要在數(shù)軸上表示點(diǎn)到原點(diǎn)的距離為,…,所以只需畫出長為,…的線段即可,我們不妨先來畫出長為,…的線段.生:長為的線段是直角邊都為1的直角三角形的斜邊,而長為的線段是直角邊為1和2的直角三角形的斜邊.師:長為的線段能否是直角邊為正整數(shù)的直角三角形的斜邊呢?生:設(shè)c=,兩直角邊長分別為a,b,根據(jù)勾股定理a2+b2=c2,即a2+b2=,b為正整數(shù),則13必須分解為兩個平方數(shù)的和,即13=4+9,a2=4,b2=9,則a=2,b=3,所以長為的線段是直角邊長分別為2,3的直角三角形的斜邊.師:下面就請同學(xué)們在數(shù)軸上畫出表示的點(diǎn).生:步驟如下:1.在數(shù)軸上找到點(diǎn)A,使OA=.作直線l垂直于OA,在l上取一點(diǎn)B,使AB=.以原點(diǎn)O為圓心、以O(shè)B為半徑作弧,弧與數(shù)軸交于點(diǎn)C,則點(diǎn)C即為表示的點(diǎn).二、例題講解【例1】飛機(jī)在空中水平飛行,某一時刻剛好飛到一個男孩頭頂正上方4800米處,過了10秒后,飛機(jī)距離這個男孩頭頂5000米,飛機(jī)每小時飛行多少千米?分析:根據(jù)題意,可以畫出如圖所示的圖形,A點(diǎn)表示男孩頭頂?shù)奈恢茫珻,B點(diǎn)是兩個時刻飛機(jī)的位置,∠C是直角,可以用勾股定理來解決這個問題.解:根據(jù)題意,得在Rt△ABC中,∠C=90176。所以△ABC為直角三角形.即命題2是正確的.師:很好!我們證明了命題2是正確的,那么命題2就成為一個定理.由于命題1證明正確以后稱為勾股定理,命題2又是命題1的逆命題,在此,我們就稱定理2是勾股定理的逆定理,勾股定理和勾股定理的逆定理稱為互逆定理.師:但是不是原命題成立,逆命題一定成立呢?生:不一定,如命題“對頂角相等”成立,它的逆命題“如果兩個角相等,那么它們是對頂角”不成立.師:你還能舉出類似的例子嗎?生:例如原命題:如果兩個實(shí)數(shù)相等,那么它們的絕對值也相等.逆命題:如果兩個數(shù)的絕對值相等,那么這兩個實(shí)數(shù)相等.顯然原命題成立,而逆命題不一定成立.二、新課教授【例1】教材第32頁例1【例2】教材第33頁例2【例3】一個零件的形狀如圖所示,按規(guī)定這個零件中∠A和∠DBC都應(yīng)為直角.工人師傅量出了這個零件各邊的尺寸,那么這個零件符合要求嗎?分析:這是一個利用直角三角形的判定條件解決實(shí)際問題的例子.解:在△ABD中,AB2+AD2=9+16=25=BD2,所以△ABD是直角三角形,∠A是直角.在△BCD中,BD2+BC2=25+144=169=132=CD2,所以△BCD是直角三角形,∠DBC是直角.因此這個零件符合要求.三、鞏固練習(xí)1.小強(qiáng)在操場上向東走80m后,又走了60m,再走100m回到原地.小強(qiáng)在操場上向東走了80m后,又走60m的方向是________.【答案】向正南或正北2.如圖,在我國沿海有一艘不明國籍的輪船進(jìn)入我國海域,我海軍甲、乙兩艘巡邏艇立即從相距13海里的A,B兩個基地前去攔截,6分鐘后同時到達(dá)C地將其攔截.已知甲巡邏艇每小時航行120海里,乙巡邏艇每小時航行50海里,航向?yàn)楸逼?0176。在探求勾股定理的過程中,蘊(yùn)涵了豐富的數(shù)學(xué)思想。在本節(jié)課,要創(chuàng)設(shè)問題串,提供學(xué)生活動的方案,讓學(xué)生在活動中思考,在思考中創(chuàng)新,認(rèn)識和理解勾股定理,并能利用勾股定理解決一些簡單的有關(guān)直角三角形的計(jì)算問題.二、教學(xué)目標(biāo)讓學(xué)生經(jīng)歷從數(shù)到形再由形到數(shù)的轉(zhuǎn)化過程,經(jīng)歷探求三個正方形面積間的關(guān)系轉(zhuǎn)化為三邊數(shù)量關(guān)系的過程?!唷螩AB=40176。角的直角三角形中,30176。.(1)如果a=7,c=25,則b=________;(2)如果∠A=30176。它突出了重點(diǎn),層次清楚,便于
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1