freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

勾股定理的逆定理說課稿-全文預(yù)覽

2024-12-06 22:46 上一頁面

下一頁面
  

【正文】 學(xué)要貫徹“因材施教”的原則,為此我安排了兩題作業(yè)。培養(yǎng)了學(xué)生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。(演示)第一題比較簡單,讓學(xué)生口答,讓所有的學(xué)生都能完成。使學(xué)生確實(shí)在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂?! 。ㄈW(xué)生在教師的指導(dǎo)下嘗試解決問題,總結(jié)規(guī)律(包括難點(diǎn)突破)  因?yàn)閹缀蝸碓从诂F(xiàn)實(shí)生活,對初二學(xué)生來說選擇適當(dāng)?shù)臅r(shí)機(jī),讓他們從個(gè)體實(shí)踐經(jīng)驗(yàn)中開始學(xué)習(xí),可以提高學(xué)習(xí)的主動(dòng)性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動(dòng)手畫圖在具體的實(shí)踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。 ?。ǘ﹦?chuàng)設(shè)問題情境  一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。滲透與他人交流、合作的意識和探究精神,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系?! 」垂啥ɡ淼哪娑ɡ碚f課稿4一、教材分析 ?。ㄒ唬⒈竟?jié)課在教材中的地位作用  “勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一?! ∪?、說教學(xué)準(zhǔn)備  多媒體教學(xué)課件  紙片、直尺、圓規(guī)等  對學(xué)生事先分組  四、說教學(xué)過程  根據(jù)本課教學(xué)內(nèi)容以及數(shù)學(xué)課程學(xué)科特點(diǎn),結(jié)合八年級學(xué)生的實(shí)際認(rèn)知水平,我設(shè)計(jì)了如下六個(gè)教學(xué)環(huán)節(jié):  (一)復(fù)習(xí)提問、引入新課  問題1:前面我們學(xué)習(xí)了勾股定理,你能說出它的題設(shè)和結(jié)論嗎?  問題2:若一個(gè)三角形三邊具有a2+b2=c2,能否確定這個(gè)三角形是直角三角形?  (二)動(dòng)手操作、觀察猜想  探究一:分組做實(shí)驗(yàn)  第一組同學(xué)每人畫一個(gè)邊長為3cm、4cm、5cm的三角形;  、6cm;  第三組同學(xué)每人畫一個(gè)邊長為4cm;  第四組同學(xué)每人畫一個(gè)邊長為2cm、5cm、6cm的三角形。  了解逆命題的概念,以及原命題為真時(shí),它的逆命題不一定為真。謝謝大家!  勾股定理的逆定理說課稿3一、說教材 ?。ㄒ唬┙滩姆治觥 ”竟?jié)內(nèi)容選自人教版八年級數(shù)學(xué)下冊第17章第二節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判定定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法來證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆。使學(xué)生再次感悟勾股定理的逆定理,體會(huì)定理的互逆性,加深對“數(shù)形結(jié)合”的理解,更深刻地理解數(shù)學(xué)思想方法在解題中的地位和作用,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣?! ≌n本中的例題是讓學(xué)生進(jìn)一步熟練掌握勾股定理的逆定理及其運(yùn)用的步驟。有效地突破本節(jié)的難點(diǎn)。于是我就設(shè)計(jì)了這樣的兩個(gè)步驟:  先補(bǔ)充一道例題:三邊長度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么聯(lián)系?你是怎么得到的?請簡單說明理由?! √剿鳉w納,證明猜測?! ∥?、說教學(xué)流程。體會(huì)觀察,作出合理的推測?! £P(guān)鍵:動(dòng)手驗(yàn)證,體驗(yàn)勾股定理的逆定理?! ∪?、說教學(xué)重點(diǎn)、難點(diǎn),關(guān)鍵??紤]到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及本班學(xué)生的實(shí)際情況,我制定了如下教學(xué)目標(biāo):  知識與技能:探索并掌握直角三角形判別思想,會(huì)應(yīng)用勾股定理及逆定理解決實(shí)際問題。八年級正是學(xué)生由實(shí)驗(yàn)幾何向推理幾何過渡的重要時(shí)期,通過對勾股定理逆定理的探究,培養(yǎng)學(xué)生的分析思維能力,發(fā)展推理能力?! ∫?、說教材。第一組是基礎(chǔ)題,我會(huì)用ppt出示關(guān)于勾股定理的逆定理的計(jì)算題目,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。在變式訓(xùn)練中我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動(dòng)、及時(shí)了解學(xué)生的學(xué)習(xí)過程,隨時(shí)反饋調(diào)節(jié)教法同時(shí)注意加強(qiáng)有針對性的個(gè)別指導(dǎo)把發(fā)展學(xué)生的思維和隨時(shí)把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。演示第一題比較簡單(判斷下列三條線段組成的三角形是不是直角三角形,比如117。這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理?因而使學(xué)生感到自然、親切。  因?yàn)閹缀蝸碓从诂F(xiàn)實(shí)生活,對初二學(xué)生來說選擇適當(dāng)?shù)臅r(shí)機(jī)讓他們從個(gè)體實(shí)踐經(jīng)驗(yàn)中開始學(xué)習(xí)可以提高學(xué)習(xí)的主動(dòng)性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動(dòng)手折紙?jiān)诰唧w的實(shí)踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗(yàn)證猜想?! ×?、說教學(xué)過程  (一)導(dǎo)入新課  在導(dǎo)入新課環(huán)節(jié),我會(huì)采用溫故知新的導(dǎo)入方法,先讓學(xué)生回顧勾股定理有關(guān)知識,并引入本節(jié)課的課題——勾股定理逆定理。  四、說教學(xué)重難點(diǎn)  重點(diǎn):勾股定理逆定理的應(yīng)用?! ±斫夤垂啥ɡ淼哪娑ɡ淼淖C明方法并能證明勾股定理的逆定理。勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。勾股定理的逆定理說課稿  勾股定理的逆定理說課稿1各位考官,大家好,我是X號考生,今天我說課的內(nèi)容是《勾股定理的逆定理》?! ∫弧⒄f教材  “勾股定理的逆定理”一節(jié)?是在上節(jié)“勾股定理”之后繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識的繼續(xù)和深化?! ∪?、說教學(xué)目標(biāo)  根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容結(jié)合學(xué)生實(shí)際我確定了如下教學(xué)目標(biāo)。  通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。基于此,我準(zhǔn)備采用的教法是講練結(jié)合法,小組討論法?! ?二)探究新知  一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識可探索卻又解決不好的問題去提示本節(jié)課的探究宗旨,演示古代埃及人把一根長繩打上等距離的13個(gè)結(jié),然后便得到一個(gè)直角三角形這是為什么?這個(gè)問題一出現(xiàn),馬上激起學(xué)生已有知識與待研究知識的認(rèn)識沖突,引起了學(xué)生的重視激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來創(chuàng)造了我要學(xué)的氣氛,同時(shí)也說明了幾何知識來源于實(shí)踐不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。從動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個(gè)直角三角形全等順利作出了輔助直角三角形,整個(gè)證明過程自然無神秘感,實(shí)現(xiàn)了從生動(dòng)直觀向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會(huì)了動(dòng)手操作——觀察——猜測——探索——論證的全過程。  (三)鞏固提高  本著由淺入深的原則安排了三個(gè)題目。  思維提高了課堂教學(xué)的效果和利用率?! ∮捎趯W(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。下面我將從教材、目標(biāo)、重點(diǎn)難點(diǎn)、教法、教學(xué)流程等幾個(gè)方面向各位專家闡述我對本節(jié)課的教學(xué)設(shè)想。還是向?qū)W生滲透“數(shù)形結(jié)合”這一數(shù)學(xué)思想方法的很好素材?! 〗虒W(xué)目標(biāo)支配著教學(xué)過程,教學(xué)目標(biāo)的制定和落實(shí)是實(shí)施課堂教學(xué)的關(guān)鍵。滲透與他人交流、合作的意識和探究精神,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系?! ‰y點(diǎn):理解勾股定理的逆定理的推導(dǎo)?! ∽寣W(xué)生實(shí)踐活動(dòng),動(dòng)手操作,看自己畫的三角形是否為一個(gè)直角三角形。既鍛煉了學(xué)生的實(shí)踐、觀察能力,又滲透了人文和探究精神。再引導(dǎo)啟發(fā)學(xué)生從這兩個(gè)活動(dòng)中歸納思考:如
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1