【摘要】精品資源普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座35)—曲線方程及圓錐曲線的綜合問題一.課標(biāo)要求:1.由方程研究曲線,特別是圓錐曲線的幾何性質(zhì)問題?;癁榈仁浇鉀Q,要加強(qiáng)等價(jià)轉(zhuǎn)化思想的訓(xùn)練;2.通過圓錐曲線與方程的學(xué)習(xí),進(jìn)一步體會(huì)數(shù)形結(jié)合的思想;3.了解圓錐曲線的簡單應(yīng)用。二.命題走向近年來圓錐曲線在高考中比較穩(wěn)定,解答題往往以中
2025-03-25 06:47
【摘要】圓錐曲線專題——定點(diǎn)、定值問題定點(diǎn)問題是常見的出題形式,化解這類問題的關(guān)鍵就是引進(jìn)變的參數(shù)表示直線方程、數(shù)量積、比例關(guān)系等,根據(jù)等式的恒成立、數(shù)式變換等尋找不受參數(shù)影響的量。直線過定點(diǎn)問題通法,是設(shè)出直線方程,通過韋達(dá)定理和已知條件找出k和m的一次函數(shù)關(guān)系式,代入直線方程即可。技巧在于:設(shè)哪一條直線?如何轉(zhuǎn)化題目條件?圓錐曲線是一種很有趣的載體,自身存在很多性質(zhì),這些性質(zhì)往往成為出題老師
2025-08-05 05:10
【摘要】橢圓中的相關(guān)問題一、橢圓中的最值問題:,內(nèi)有一點(diǎn),為橢圓上任意一點(diǎn),若要求最小,則這最小值是()A.B.C.D.,,為橢圓上任意一點(diǎn),若要求最小,則這最小值是()A.B.C.D.3.橢圓上任一點(diǎn)橢圓到兩焦點(diǎn)橢圓,的距離之積的最大值是,最小值是。4.設(shè),則的
2025-07-21 11:38
【摘要】第十章圓錐曲線★知識(shí)網(wǎng)絡(luò)★橢圓雙曲線拋物線定義定義定義標(biāo)準(zhǔn)方程標(biāo)準(zhǔn)方程幾何性質(zhì)幾何性質(zhì)應(yīng)用應(yīng)用標(biāo)準(zhǔn)方程幾何性質(zhì)應(yīng)用圓錐曲線直線與圓錐曲線位置關(guān)系相交相切相離圓錐曲線的弦第1講橢圓★知識(shí)梳理★1.橢圓定義:(1)第一定義:平面內(nèi)與兩個(gè)定點(diǎn)的距離之和為常數(shù)的動(dòng)點(diǎn)的軌跡叫橢圓,
2025-08-04 09:58
【摘要】定點(diǎn)、定直線、定值專題1、已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為,最小值為.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)若直線與橢圓相交于,兩點(diǎn)(不是左右頂點(diǎn)),且以為直徑的圓過橢圓的右頂點(diǎn),求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).【標(biāo)準(zhǔn)答案】(I)由題意設(shè)橢圓的標(biāo)準(zhǔn)方程為,(II)設(shè),由得,,.以AB為直徑的圓過橢圓的右頂點(diǎn),,(最好是用
2025-03-26 05:41
【摘要】圓錐曲線一、知識(shí)點(diǎn)1、曲線和方程2、橢圓定義(第一定義、第二定義)3、橢圓標(biāo)準(zhǔn)方程(1、2)與參數(shù)方程4、橢圓性質(zhì):圖像特點(diǎn)、范圍、頂點(diǎn)、離心率、對(duì)稱性、準(zhǔn)線、焦半徑、通徑等5、橢圓與直線的位置關(guān)系二、雙曲線1、定義(第一、第二定義)2、標(biāo)準(zhǔn)方程3、性質(zhì)“圖像、范圍、頂點(diǎn)、離心率、對(duì)稱性、準(zhǔn)線、漸近線、焦半徑、通徑等4、雙曲線與直
2025-07-23 20:57
【摘要】高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件80《圓錐曲線的綜合問題》一、基本知識(shí)概要:知識(shí)精講:圓錐曲線的綜合問題包括:解析法的應(yīng)用,數(shù)形結(jié)合的思想,與圓錐曲線有關(guān)的定值、最值等問題,主要沿著兩條主線,即圓錐曲線科內(nèi)綜合與代數(shù)間的科間綜合,靈活運(yùn)用解析幾何的常用方法,解決圓錐曲線的綜合問題;通過問題的解決,進(jìn)一步掌握函數(shù)與方程
2024-11-10 00:28
【摘要】 高三數(shù)學(xué)第一輪復(fù)習(xí)講義(小結(jié)) 圓錐曲線 一.課前預(yù)習(xí): 1.設(shè)拋物線,線段的兩個(gè)端點(diǎn)在拋物線上,且,那么線段的中點(diǎn)到軸的最短距離是 ( ) ...
2025-04-03 03:26
【摘要】專題 圓錐曲線中的探索性問題1.(2016·課標(biāo)全國乙)在直角坐標(biāo)系xOy中,直線l:y=t(t≠0)交y軸于點(diǎn)M,交拋物線C:y2=2px(p0)于點(diǎn)P,M關(guān)于點(diǎn)P的對(duì)稱點(diǎn)為N,連接ON并延長交C于點(diǎn)H.(1)求;(2)除H以外,直線MH與C是否有其他公共點(diǎn)?說明理由.2.(2016·四川)已知橢圓E:+=1(ab&g
2025-07-25 00:14
【摘要】WORD資料可編輯圓錐曲線中的最值取值范圍問題=l(a0,b0)的左、右焦點(diǎn),P為雙曲線上的一點(diǎn),若,且的三邊長成等差數(shù)列.又一橢圓的中心在原點(diǎn),短軸的一個(gè)端點(diǎn)到其右焦點(diǎn)的距離為,雙曲線與該橢圓離心率之積為。(I)求橢圓的方程;(
2025-03-25 00:02
【摘要】解析幾何專題·經(jīng)典結(jié)論收集整理:宋氏資料2016-1-1有關(guān)解析幾何的經(jīng)典神級(jí)結(jié)論一、橢圓1.點(diǎn)處的切線平分在點(diǎn)處的外角.(橢圓的光學(xué)性質(zhì))2.平分在點(diǎn)處的外角,則焦點(diǎn)在直線上的射影點(diǎn)的軌跡是以長軸為直徑的圓,除去長軸的兩個(gè)端點(diǎn).(中位線)3.以焦點(diǎn)弦為直徑的圓必與對(duì)應(yīng)準(zhǔn)線相離.(第二定義)4.以焦點(diǎn)半徑為直徑的圓必與以長軸為直徑
2025-08-05 04:54
【摘要】山東高考解析幾何題的推廣及背景溯源2011年高考山東理科第22題,是一道以橢圓為背景考查定值問題、最值問題和存在性問題的解析幾何壓軸題,重點(diǎn)考查推理運(yùn)算能力和數(shù)學(xué)綜合素質(zhì)。本文筆者嘗試對(duì)該題的結(jié)論作一般化推廣,并對(duì)其背景作深度挖掘和溯源解析,與讀者交流。?題目已知直線與橢圓交于兩不同點(diǎn),且面積,其中為坐標(biāo)原點(diǎn)。(Ⅰ)證明和均為定值;(Ⅱ)設(shè)線段的中點(diǎn)為,求的最大值;(Ⅲ)
2025-07-25 00:15
【摘要】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件80《圓錐曲線的綜合問題》一、基本知識(shí)概要:知識(shí)精講:圓錐曲線的綜合問題包括:解析法的應(yīng)用,數(shù)形結(jié)合的思想,與圓錐曲線有關(guān)的定值、最值等問題,主要沿著兩條主線,即圓錐曲線科內(nèi)綜合與代數(shù)間的科間綜合,靈活運(yùn)用解析幾何的常用方法,解決圓錐曲線的綜合問題;通過問題的解決,進(jìn)一步掌握
2024-11-11 02:53
【摘要】WORD資料可編輯圓錐曲線光學(xué)性質(zhì)的證明及應(yīng)用初探一、圓錐曲線的光學(xué)性質(zhì)1.1 橢圓的光學(xué)性質(zhì):從橢圓一個(gè)焦點(diǎn)發(fā)出的光,經(jīng)過橢圓反射后,反射光線都匯聚到橢圓的另一個(gè)焦點(diǎn)上;()橢圓的這種光學(xué)特性,常被用來設(shè)計(jì)一些照明設(shè)備或聚熱裝置.例如在處放置一個(gè)熱源,那
2025-06-22 16:01
【摘要】圓錐曲線的解題技巧一、常規(guī)七大題型:(1)中點(diǎn)弦問題具有斜率的弦中點(diǎn)問題,常用設(shè)而不求法(點(diǎn)差法):設(shè)曲線上兩點(diǎn)為,,代入方程,然后兩方程相減,再應(yīng)用中點(diǎn)關(guān)系及斜率公式(當(dāng)然在這里也要注意斜率不存在的請(qǐng)款討論),消去四個(gè)參數(shù)。如:(1)與直線相交于A、B,設(shè)弦AB中點(diǎn)為M(x0,y0),則有。(2)與直線l相交于A、B,設(shè)弦AB中點(diǎn)為M(x0,y0
2025-03-25 00:04