【摘要】......用基本不等式解決應用題,現(xiàn)準備在該廠附近建一職工宿舍,并對宿舍進行防輻射處理,建房防輻射材料的選用與宿舍到工廠距離有關.若建造宿舍的所有費用(萬元)和宿舍與工廠的距離的關系為:,若距離為1km時,測算宿舍建造費用
2025-03-25 06:05
【摘要】第6講不等式高考要點回扣1.不等式(1)不等式的性質(zhì)對不等式的性質(zhì),關鍵是正確理解和運用,要弄清每一個性質(zhì)的條件和結論,注意條件的放寬和加強,以及條件、結論之間的相互聯(lián)系,不等式的性質(zhì)包括“單向性”和“雙向性”兩個方面.單向性主要用于證明不等式,雙向性是解不等式的基礎,因此解不等式要求的是同解變形.(
2025-11-01 07:32
【摘要】合理應用基本不等式求極值胡建斌一、≥型適用條件:恒量極小值條件:1、最短傳送時間如圖所示,一平直的傳送帶以速度v=2m/s勻速運動,傳送帶把A處的工件運送到B處,A、B相距L=10m,從A處把工件無初速地放到傳送帶上,經(jīng)過時間t=6s,能傳送到B處,欲用最短的時間把工件從A處運送到B處,求傳送帶的運行速度至少多大?解析:把A處的工件運送到B處,要經(jīng)過先加速后勻速
2025-05-13 23:25
【摘要】基本不等式【考綱要求】,理解基本不等式的幾何意義,并掌握定理中的不等號“≥”取等號的條件是:當且僅當這兩個數(shù)相等;(?。┲祮栴}.;能夠解決一些簡單的實際問題【知識網(wǎng)絡】基本不等式重要不等式最大(小)值問題基本不等式基本不等式的應用【考點梳理】考點一:重要不等式及幾何意義1.重要不等式:如果,那么(當且僅當時取等號“=”).2.基
2025-08-05 04:42
【摘要】第一篇:基本不等式教學設計 《基本不等式》教學設計 開江中學魏江蘭 目標分析 依據(jù)《新課程標準》對《不等式》學段的目標要求和學生的實際情況,特確定如下目標: 1、知識與能力目標:理解掌握...
2025-10-15 16:35
【摘要】第一篇:基本不等式的證明 重要不等式及其應用教案 教學目的 (1)使學生掌握基本不等式a2+b2≥2ab(a、b∈R,當且僅當a=b時取“=”號)和a3+b3+c3≥3abc(a、b、c∈R+,...
2025-10-18 20:07
【摘要】基本不等式題型歸納【重點知識梳理】1.基本不等式:(1)基本不等式成立的條件:,.(2)等號成立的條件:當且僅當時,等號成立.2.幾個重要的不等式:(1)();(2)();(3)();(4)().3.算術平均數(shù)與幾何平均數(shù)設,,則的算術平均數(shù)為,幾何平均數(shù)為,基本不等式可敘述為兩個正數(shù)的算術平均數(shù)不小于它們的幾何平均數(shù).4.利用基本不等式求最值問題
2025-03-25 00:14
【摘要】......《基本不等式》說課稿各位老師大家好,我選擇的課題是人教A版必修5第三章第四節(jié)《基本不等式》第一課時。下面我將圍繞“教什么”,“怎么教”,“為什么這么教”這三個問題從以下六個方面來闡述我對教材的理解與教學設計。(一、教
2025-04-17 00:22
【摘要】題型1 基本不等式正用a+b≥2例1:(1)函數(shù)f(x)=x+(x0)值域為________;函數(shù)f(x)=x+(x∈R)值域為________;(2)函數(shù)f(x)=x2+的值域為________.解析:(1)∵x0,x+≥2=2,∴f(x)(x0)值域為[2,+∞);當x∈R時,f(x)值域為(-∞,-2]∪[2,+∞);(2)x2+=(x2
2025-08-05 04:52
【摘要】......基本不等式提高題1.已知直線l1:a2x+y+2=0與直線l2:bx﹣(a2+1)y﹣1=0互相垂直,則|ab|的最小值為( ?。.5B.4C.2D.12.已知a>0,b>1且
【摘要】基本不等式與最大(?。┲祷静坏仁饺绻际钦龜?shù),那么,當且僅當都是正數(shù)時,等號成立.abba??2ba,CAOBD問題1.把一段16㎝長的鐵絲彎成形狀不同的矩形,什么時候面積最大?2.在面積為16c㎡的所有不同形狀的矩形中
2025-11-03 16:44
【摘要】高考數(shù)學基本不等式的應用與常見錯誤評析·基本不等式及應用是高中階段一個重要的知識點;其方法靈活,應用廣范。在學習過程中要求學生對公式的條件、形式、結論等要熟練掌握,才能靈活運用。 一、基本不等式: ,b∈R,a2+b2≥2ab,當且僅當a=b等號成立, ,b∈R+,a+b≥2-,當且僅當a=b等號成立?! 《?、問題1:設ab﹤0,則:-+-的取值范圍是(
2025-06-07 23:44
【摘要】第一篇:基本不等式說課 基本不等式 一、教材分析 本節(jié)課是人教版高中數(shù)學必修5中第三章第4節(jié)的內(nèi)容。二元均值不等式。這是在學習了“不等式的性質(zhì)”、“不等式的解法”及“線性規(guī)劃”的基礎上對不等...
2025-11-06 02:54
【摘要】第一篇:基本不等式教學設計 基本不等式 一、教學設計理念: 注重學生自主、合作、探究學習,、教學設計思路: 這節(jié)課的目標定位分為三個層面: 第一層面:知識與技能層面,①了解兩個正數(shù)的算術平均...
2025-11-05 13:44
【摘要】基本不等式??.,,,,并給出證明以定理的形式給出下面將它為了方便同學們學習不等式要重過學經(jīng)我們已Rbaabba???222.,,,,等號成立時且僅當當那么如果定理baabbaRba????2122??.,,,,成立等號時當且僅當所以時等號成立當且僅因為證明bababaabb
2025-08-05 17:11