【總結(jié)】第2課時基本不等式【課標(biāo)要求】1.理解并掌握定理1、定理2,會用兩個定理解決函數(shù)的最值或值域問題.2.能運(yùn)用平均值不等式(兩個正數(shù)的)解決某些實際問題.【核心掃描】1.基本不等式常用來考查函數(shù)最值等問題,要注意不等式成立的前提條件.(重點)2.實際應(yīng)用中的最值問題通常轉(zhuǎn)化為y=ax+bx
2025-07-23 17:21
【總結(jié)】第一篇:基本不等式教案 基本不等式 【教學(xué)目標(biāo)】 1、掌握基本不等式,能正確應(yīng)用基本不等式的方法解決最值問題 2、用易錯問題引入要研究的課題,通過實踐讓同學(xué)對基本不等式應(yīng)用的二個條件有進(jìn)一步的...
2025-10-19 11:37
【總結(jié)】基本不等式說課稿 基本不等式是主要應(yīng)用于求某些函數(shù)的最值及證明的不等式。以下是小編整理的基本不等式說課稿,希望對大家有幫助! 基本不等式說課稿1尊敬的各位考官大家好,我是今天的X號考生,今天我說課...
2024-12-07 02:50
【總結(jié)】......《不等式》的說課稿各位領(lǐng)導(dǎo)、老師們大家好:今天我說課的內(nèi)容是北師版數(shù)學(xué)高中教材必修五第三章第一二三節(jié),我將從八個方面(教材、學(xué)情、教學(xué)模式、教學(xué)設(shè)計、板書、評價、開發(fā)、得失,出示ppt)說我對此課的思考和
2025-04-17 00:22
【總結(jié)】新希望培訓(xùn)學(xué)校MATHMATICS基本不等式一.基本不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)(3)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”);若,則(當(dāng)且僅當(dāng)時取“=”)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”)若,則(當(dāng)且僅當(dāng)時
2025-03-24 03:55
【總結(jié)】基本不等式習(xí)題課一知識復(fù)習(xí)1.基本不等式:對任意a、b∈____,有a+b2≥ab成立,當(dāng)且僅當(dāng)a=b時取等號.(1)x、y∈(0,+∞),且xy=P(定值),那么當(dāng)x=y(tǒng)時,x+y有最___值2P.(2)x、y∈(0,+∞),且x+
2025-08-05 04:43
【總結(jié)】......用基本不等式解決應(yīng)用題,現(xiàn)準(zhǔn)備在該廠附近建一職工宿舍,并對宿舍進(jìn)行防輻射處理,建房防輻射材料的選用與宿舍到工廠距離有關(guān).若建造宿舍的所有費用(萬元)和宿舍與工廠的距離的關(guān)系為:,若距離為1km時,測算宿舍建造費用
2025-03-25 06:05
【總結(jié)】第6講不等式高考要點回扣1.不等式(1)不等式的性質(zhì)對不等式的性質(zhì),關(guān)鍵是正確理解和運(yùn)用,要弄清每一個性質(zhì)的條件和結(jié)論,注意條件的放寬和加強(qiáng),以及條件、結(jié)論之間的相互聯(lián)系,不等式的性質(zhì)包括“單向性”和“雙向性”兩個方面.單向性主要用于證明不等式,雙向性是解不等式的基礎(chǔ),因此解不等式要求的是同解變形.(
2025-11-01 07:32
【總結(jié)】合理應(yīng)用基本不等式求極值胡建斌一、≥型適用條件:恒量極小值條件:1、最短傳送時間如圖所示,一平直的傳送帶以速度v=2m/s勻速運(yùn)動,傳送帶把A處的工件運(yùn)送到B處,A、B相距L=10m,從A處把工件無初速地放到傳送帶上,經(jīng)過時間t=6s,能傳送到B處,欲用最短的時間把工件從A處運(yùn)送到B處,求傳送帶的運(yùn)行速度至少多大?解析:把A處的工件運(yùn)送到B處,要經(jīng)過先加速后勻速
2025-05-13 23:25
【總結(jié)】基本不等式【考綱要求】,理解基本不等式的幾何意義,并掌握定理中的不等號“≥”取等號的條件是:當(dāng)且僅當(dāng)這兩個數(shù)相等;(?。┲祮栴}.;能夠解決一些簡單的實際問題【知識網(wǎng)絡(luò)】基本不等式重要不等式最大(?。┲祮栴}基本不等式基本不等式的應(yīng)用【考點梳理】考點一:重要不等式及幾何意義1.重要不等式:如果,那么(當(dāng)且僅當(dāng)時取等號“=”).2.基
2025-08-05 04:42
【總結(jié)】第一篇:基本不等式教學(xué)設(shè)計 《基本不等式》教學(xué)設(shè)計 開江中學(xué)魏江蘭 目標(biāo)分析 依據(jù)《新課程標(biāo)準(zhǔn)》對《不等式》學(xué)段的目標(biāo)要求和學(xué)生的實際情況,特確定如下目標(biāo): 1、知識與能力目標(biāo):理解掌握...
2025-10-15 16:35
【總結(jié)】第一篇:基本不等式的證明 重要不等式及其應(yīng)用教案 教學(xué)目的 (1)使學(xué)生掌握基本不等式a2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時取“=”號)和a3+b3+c3≥3abc(a、b、c∈R+,...
2025-10-18 20:07
【總結(jié)】基本不等式題型歸納【重點知識梳理】1.基本不等式:(1)基本不等式成立的條件:,.(2)等號成立的條件:當(dāng)且僅當(dāng)時,等號成立.2.幾個重要的不等式:(1)();(2)();(3)();(4)().3.算術(shù)平均數(shù)與幾何平均數(shù)設(shè),,則的算術(shù)平均數(shù)為,幾何平均數(shù)為,基本不等式可敘述為兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù).4.利用基本不等式求最值問題
2025-03-25 00:14
【總結(jié)】......《基本不等式》說課稿各位老師大家好,我選擇的課題是人教A版必修5第三章第四節(jié)《基本不等式》第一課時。下面我將圍繞“教什么”,“怎么教”,“為什么這么教”這三個問題從以下六個方面來闡述我對教材的理解與教學(xué)設(shè)計。(一、教
【總結(jié)】題型1 基本不等式正用a+b≥2例1:(1)函數(shù)f(x)=x+(x0)值域為________;函數(shù)f(x)=x+(x∈R)值域為________;(2)函數(shù)f(x)=x2+的值域為________.解析:(1)∵x0,x+≥2=2,∴f(x)(x0)值域為[2,+∞);當(dāng)x∈R時,f(x)值域為(-∞,-2]∪[2,+∞);(2)x2+=(x2
2025-08-05 04:52