【摘要】基本不等式作業(yè)(一)1.下列不等式成立的是()A.a(chǎn)bba??2B.abba???2C.21??xxD.2122??xx2.若a∈R,下列不等式恒成立的是()+1aB.1112??aC.a2+96aD.lg(a2+1
2024-11-23 13:45
【摘要】基本不等式【學(xué)習(xí)目標(biāo)】ab?2ba?的證明方法,要求學(xué)生掌握算術(shù)平均數(shù)與幾何平均數(shù)的意義,并掌握“均值不等式”及其推導(dǎo)過程。.【學(xué)習(xí)重難點(diǎn)】理解利用基本不等式ab?2ba?求函數(shù)的最值問題【類法通解】1.利用基本不等式求最值,必須按照“一正,二定,三相等”的原則,即(1)一正:符合基
2024-11-23 12:48
【摘要】:2baab??復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號時取“當(dāng)當(dāng)且僅那么如果?????baabbaRba復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號時取“當(dāng)當(dāng)且僅那么如果?????baabbaRba;)(2,,)2
2025-07-25 15:38
【摘要】基本不等式的綜合應(yīng)用基本不等式是人教版高中數(shù)學(xué)必修5第三章第四節(jié)的內(nèi)容,在高考中占有很重要的比重。而同學(xué)們在使用基本不等式的過程中往往會遇到各種各樣的題型而覺得無從入手?,F(xiàn)結(jié)合教學(xué)中實(shí)際遇到的問題,淺談利用基本不等式求最值的各類題型的處理方法。題型一:直接利用基本不等式求最值理論依據(jù):(1)當(dāng)且時,,當(dāng)且僅當(dāng)時等號成立,簡記為“和定積最大”(2)當(dāng)且時,,當(dāng)且僅當(dāng)時等號成立,簡
2025-07-23 12:30
【摘要】(第一課時)導(dǎo)學(xué)案【課程標(biāo)準(zhǔn)要求】①探索并了解基本不等式的證明過程.②會用基本不等式解決簡單的最大(?。┲祮栴}.【學(xué)習(xí)目標(biāo)】①經(jīng)歷由幾何圖形抽象出重要不等式的過程,會用比較法證明重要不等式;②經(jīng)歷由重要不等式代換獲得基本不等式的過程,知道與的相等與不等關(guān)系及等號成立的條件;矚慫潤厲釤瘞睞櫪廡賴賃軔朧礙鱔絹。③經(jīng)歷從不同角度探索基本不等式的證明過程,加深認(rèn)識基本不等
2025-04-16 12:23
【摘要】:學(xué)案(第一課時)一、學(xué)習(xí)目標(biāo)基本不等式:適用條件:二、典型例題例1.(1)已知正數(shù)滿足,則的最小值是.(2)已知正數(shù)滿足,則的最大值是.變式:已知,則的最小值是.(3)在下列條件中,最小值為2的是()A.()B.()
2025-08-17 05:25
【摘要】2abab??(0,0)ab??學(xué)習(xí)目標(biāo)?會用基本不等式證明一些簡單不等式;?會用基本不等式解決簡單的最值問題.(重點(diǎn))如果a、b?R,那么a2+b2?2ab(當(dāng)且僅當(dāng)a=b時取“=”號)如果a,b是正數(shù),那么(當(dāng)且僅當(dāng)a=b
2024-11-12 17:13
【摘要】基本不等式經(jīng)典習(xí)題1、已知x,y為正數(shù),則的最大值為▲2.實(shí)數(shù)、、滿足,則的最大值為▲.3、已知正實(shí)數(shù)x,y滿足,則xy的取值范圍為▲.【答案】[1,]4、設(shè)x,y是正實(shí)數(shù),且x+y=1,則的最小值為▲455.(浙江理16)設(shè)為實(shí)數(shù),若則的最大值是.6、(2010
2025-06-24 16:38
【摘要】第八節(jié)基本不等式考綱點(diǎn)擊.(小)值問題.熱點(diǎn)提示,兼顧考查代數(shù)式變形、化簡能力,注意“一正、二定、三相等”的條件.,可出選擇題、填空題,也可出以函數(shù)為載體的解答題.,與其他知識結(jié)合在一起來考查基本不等式,證明不會太難.但題型多樣,涉及面廣.基本不等式不等式成立的條件等號成立的條件
2024-11-09 04:10
【摘要】新希望培訓(xùn)學(xué)校MATHMATICS基本不等式一.基本不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)(3)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”);若,則(當(dāng)且僅當(dāng)時取“=”)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”)若,則(當(dāng)且僅當(dāng)時
2025-03-24 03:55
【摘要】第一篇:基本不等式的證明教案 課題:基本不等式的證明(1) 斜橋中學(xué)肖劍 一、教材分析 不等式是高中的重點(diǎn)也是難點(diǎn),而本節(jié)內(nèi)容又是該章的重中之重,是《考試說明》中八個C級考點(diǎn)之一?;静坏仁降?..
2024-10-27 19:03
【摘要】第一篇:基本不等式教學(xué)反思200711 “基本不等式”教學(xué)反思 周開芹 根據(jù)新課標(biāo)的要求,本節(jié)的重點(diǎn)是應(yīng)用數(shù)形結(jié)合的思想理解基本不等式,并從不同角度探索基本不等式的證明過程,難點(diǎn)是用基本不等式求...
2024-10-25 17:23
【摘要】1基本不等式公主嶺一中王春芳一、教學(xué)過程:(一)創(chuàng)設(shè)情景,提出問題;右圖是在北京召開的第24屆國際數(shù)學(xué)家大會的會標(biāo),會標(biāo)是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明暗使它看上去像一個風(fēng)車,代表中國人民熱情好客。(1)你能通過下面的模擬圖找出一些相等關(guān)系或不等關(guān)系嗎?
2024-11-23 15:27
【摘要】第一篇:《基本不等式》教案 《基本不等式》教學(xué)設(shè)計 教材:人教版高中數(shù)學(xué)必修5第三章 一、教學(xué)目標(biāo) 1.通過兩個探究實(shí)例,引導(dǎo)學(xué)生從幾何圖形中獲得兩個基本不等式,了解基本不等式的幾何背景,體會...
2024-10-28 23:20
【摘要】......新課標(biāo)人教A版高中數(shù)學(xué)必修五典題精講()典題精講例1(1)已知0<x<,求函數(shù)y=x(1-3x)的最大值;(2)求函數(shù)y=x+的值域.思路分析:(1)由極值定理,可知需構(gòu)造某個和為定值,可考慮把括號內(nèi)外x的系數(shù)變
2025-03-25 00:14