【總結(jié)】高中數(shù)學(xué)函數(shù)練習(xí)題1、下列函數(shù)中,值域是(0,+∞)的函數(shù)是A.B.C.D.2、已知(是常數(shù)),在上有最大值3,那么在上的最小值是 A. B. C. D.3、已知函數(shù)在區(qū)間[0,m]上有最大值3,最小值2,則m的取值范圍是A、[1,+∞)B、[0,
2025-04-04 05:07
【總結(jié)】§1.2.2函數(shù)的表示法一.教學(xué)目標(biāo)1.知識與技能(1)明確函數(shù)的三種表示方法;(2)會根據(jù)不同實際情境選擇合適的方法表示函數(shù);(3)通過具體實例,了解簡單的分段函數(shù)及應(yīng)用.2.過程與方法:學(xué)習(xí)函數(shù)的表示形式,其目的不僅是研究函數(shù)的性質(zhì)和應(yīng)用的需要,而且是為加深理解函數(shù)概念的形成過程.3.情態(tài)與價值
2024-11-19 20:24
【總結(jié)】對數(shù)函數(shù)及其性質(zhì)效果分析本節(jié)課首先通過一個關(guān)于猛犸象的視頻引入課題,既激發(fā)了學(xué)生的學(xué)習(xí)興趣,又很好地將數(shù)學(xué)與生活聯(lián)系在一起。為學(xué)生了解對數(shù)函數(shù)模型的實際背景,認識數(shù)學(xué)與現(xiàn)實生活及其他學(xué)科的聯(lián)系提供了鮮活的素材。通過視頻引出如何推知猛犸象的年齡這一問題,進而進行歸納提煉,得出了對數(shù)函數(shù)的概念。這里既蘊含了從特殊到一般的歸納思想,又很好地解決了直接呈現(xiàn)概念所帶來的學(xué)生不
2024-12-08 01:55
【總結(jié)】函數(shù)(二)教學(xué)目標(biāo):理解映射的概念;用映射的觀點建立函數(shù)的概念.教學(xué)重點:用映射的觀點建立函數(shù)的概念.教學(xué)過程:1.通過對教材上例4、例5、例6的研究,引入映射的概念.注:1,補充例子:投擲飛標(biāo)時,每一支飛標(biāo)射到盤上時,是射到盤上的唯一點上。于是,如果我們把A看作是飛標(biāo)組成的集合,B看作是
2024-12-08 08:44
【總結(jié)】函數(shù)sin()yAx????的圖像(1)【學(xué)習(xí)目標(biāo)】:1、了解函數(shù)sin()yAx????的實際意義;2、弄清,,A??與函數(shù)sin()yAx????的圖像之間的關(guān)系;3、會用五點法畫函數(shù)sin()yAx????的圖像;【重點難點】:五點法畫函數(shù)sin()yAx????的圖像一、預(yù)
2024-12-05 10:16
【總結(jié)】第二章函數(shù)課題:指數(shù)函數(shù)1教學(xué)目的:,并能正確作出其圖象,掌握指數(shù)函數(shù)的性質(zhì).教學(xué)重點:指數(shù)函數(shù)的圖象、性質(zhì)教學(xué)難點:指數(shù)函數(shù)的圖象性質(zhì)與底數(shù)a的關(guān)系.教學(xué)過程:一、復(fù)習(xí)引入:引例1:某種細胞分裂時,由1個分裂成2個,2個分裂成4個,…….1個這樣的細胞分裂x次后,得到的細胞個數(shù)y與x的函數(shù)關(guān)系是什么?分裂次數(shù):1,2,3,4,…,x
2025-04-17 13:03
【總結(jié)】高中數(shù)學(xué)函數(shù)知識點梳理1..函數(shù)的單調(diào)性(1)設(shè)那么上是增函數(shù);上是減函數(shù).(2)設(shè)函數(shù)在某個區(qū)間內(nèi)可導(dǎo),如果,則為增函數(shù);如果,則為減函數(shù).注:如果函數(shù)和都是減函數(shù),則在公共定義域內(nèi),和函數(shù)也是減函數(shù);如果函數(shù)和在其對應(yīng)的定義域上都是減函數(shù),則復(fù)合函數(shù)是增函數(shù).2.奇偶函數(shù)的圖象特征奇函數(shù)的圖象關(guān)于原點對稱,偶函數(shù)的圖象關(guān)于y軸對稱;反過來,如果一個函數(shù)的圖
【總結(jié)】高中階段常見函數(shù)性質(zhì)匯總xybOf(x)=b函數(shù)名稱:常數(shù)函數(shù)解析式形式:f(x)=b(b∈R)圖象及其性質(zhì):函數(shù)f(x)的圖象是平行于x軸或與x軸重合(垂直于y軸)的直線定義域:R值域:單調(diào)性:沒有單調(diào)性奇偶性:均為偶函數(shù)[當(dāng)b=0時,函數(shù)既是奇函數(shù)又是偶函數(shù)]反
2025-04-04 05:16
【總結(jié)】第一篇、復(fù)合函數(shù)問題一、復(fù)合函數(shù)定義: 設(shè)y=f(u)的定義域為A,u=g(x)的值域為B,若AB,則y關(guān)于x函數(shù)的y=f[g(x)]叫做函數(shù)f與g的復(fù)合函數(shù),u叫中間量.二、復(fù)合函數(shù)定義域問題:(一)例題剖析:(1)、已知的定義域,求的定義域思路:設(shè)函數(shù)的定義域為D,即,所以的作用范圍為D,又f對作用,作用范圍不變,所以,解得,E為的定義域。例1.設(shè)函數(shù)的定義域為(
2025-04-04 05:08
【總結(jié)】范文范例參考高中數(shù)學(xué)組卷三角函數(shù)圖像1.f(x)=Acos(ωx+φ)(A,ω>0)的圖象如圖所示,為得到g(x)=﹣Asin(ωx+)的圖象,可以將f(x)的圖象( )A.向右平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向左平移個單位長度2.函數(shù)f(x)=sin(ωx+φ)(其中|φ|<)的圖象如圖所示,為了得到y(tǒng)=sinω
2025-04-04 05:15
【總結(jié)】函數(shù)的三要素【函數(shù)定義域求法】一、常規(guī)型即給出函數(shù)的解析式的定義域求法,其解法是由解析式有意義列出關(guān)于自變量的不等式或不等式組,解此不等式(或組)即得原函數(shù)的定義域。 l分式中的分母不為零;l偶次方根下的數(shù)(或式)大于或等于零;l指數(shù)式的底數(shù)大于零且不等于1;l0的0次冪沒有
2025-07-23 13:05
【總結(jié)】...抽象函數(shù)專題訓(xùn)練1線性函數(shù)型抽象函數(shù)【例題1】已知函數(shù)對任意實數(shù),均有,且當(dāng)時,求在區(qū)間上的值域?!纠}2】已知函數(shù)對任意實數(shù),均有,且當(dāng)時,求不等式的解。2指數(shù)函數(shù)型抽象函數(shù)【例題3】已知函數(shù)定義域為R,滿足條件:存在,使得對任何和
2025-08-05 18:07
【總結(jié)】高中數(shù)學(xué)必修一冪函數(shù)教案教學(xué)目標(biāo):知識與技能通過具體實例了解冪函數(shù)的圖象和性質(zhì),并能進行簡單的應(yīng)用.過程與方法能夠類比研究一般函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的過程與方法,來研究冪函數(shù)的圖象和性質(zhì).情感、態(tài)度、價值觀體會冪函數(shù)的變化規(guī)律及蘊含其中的對稱性.教學(xué)重點:重點從五個具體冪函數(shù)中認識冪函數(shù)的一些性質(zhì).難點畫五個具體冪函數(shù)的圖象并由圖象概括其性質(zhì),
2025-08-05 18:17
【總結(jié)】(滿分:150分考試時間:120分鐘)一、選擇題:本大題共12小題。每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)是偶函數(shù),則函數(shù)的對稱軸是()A.B.C.D.2.已知,則函數(shù)的圖象不經(jīng)過()A.第一象限B.第二象限C.第三象限D(zhuǎn).
2025-06-27 17:17
【總結(jié)】1、二次函數(shù)1已知二次函數(shù),不等式的解集為.(Ⅰ)若方程有兩個相等的實根,求的解析式;(Ⅱ)若的最大值為正數(shù),求實數(shù)的取值范圍.1、解:(Ⅰ)∵不等式的解集為∴和是方程的兩根∴∴又方
2025-01-15 09:39