【總結(jié)】1、垂直于同一條直線的兩條直線一定A、平行B、相交C、異面D、以上都有可能2、a,b,c表示直線,M表示平面,給出下列四個命題:①若a∥M,b∥M,則a∥b;②若bM,a∥b,則a∥M;③若a⊥c,b⊥c,則a∥b;④若a⊥M,b⊥M,則a∥ A、0個 B、1個
2025-03-25 02:03
【總結(jié)】高一立體幾何證明專題練習(xí)一,在三棱柱ABC-A1B1C1中,E,F(xiàn),G,H分別是AB,AC,A1B1,A1C1的中點,求證:(1)B,C,H,G四點共面;(2)平面EFA1∥平面BCHG.,在直三棱柱ABC-A1B1C1中,AB=AC=5,BB1=BC=6,D,E分別是AA1和B1C的中點.(1)求證:DE∥平面ABC;(
2025-03-26 05:39
【總結(jié)】第一篇:向量方法在立體幾何教學(xué)中的應(yīng)用 轉(zhuǎn)自論文部落論文范文發(fā)表論文發(fā)表 向量方法在立體幾何教學(xué)中的應(yīng)用 作者:王龍生 摘要:在江蘇省對口單招數(shù)學(xué)試卷中,,是溝通代數(shù)與幾何的工具之一,,可以將...
2024-11-16 06:15
【總結(jié)】1、已知正方體,是底對角線的交點.求證:(1)C1O∥面;(2)面.2、正方體中,求證:(1);(2).3、正方體ABCD—A1B1C1D1中.(1)求證:平面A1BD∥平面B1D1C;A1AB1BC1CD1DGEF(2)若E、F分別是AA1,
2025-03-26 05:42
【總結(jié)】一輪復(fù)習(xí)之立體幾何姓名一輪復(fù)習(xí)之立體幾何姓名1.已知三棱錐中,為等腰直角三角形,,設(shè)點為中點,點為中點,點為上一點,且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.
2025-07-24 12:16
【總結(jié)】立體幾何中的向量方法—求空間角?立體幾何這一考點在廣東高考試卷中占有很大比例,11年19分12年18分13年24分。這些題目也是我們?nèi)幦×η鬂M分的題目。主要考查三視圖問題,點線面位置關(guān)系問題,還有就是大題.大題主要有垂直、平行、角度、體積。對于角度問題,一直是一個難點。大體有兩種求法,一類是傳統(tǒng)方法,一做(找)二證三求,另一種方
2025-06-16 12:13
【總結(jié)】第一篇:立體幾何方法總結(jié) 一、線線平行: 用: 1、平幾(如:同位角、內(nèi)錯角相等;常用分線段比值相等); 2、證線 線平行(公理4); 3、證線面平行; 4、求異面直線所成角。 證: ...
2024-11-12 18:00
【總結(jié)】空間向量在立體幾何中的應(yīng)用5前段時間我們研究了用空間向量求角(包括線線角、線面角和面面角)、求距離(包括線線距離、點面距離、線面距離和面面距離)今天我來研究如何利用空間向量來解決立體幾何中的有關(guān)證明及計算問題。一、空間向量的運算及其坐標(biāo)運算的掌握二、立體
2025-01-08 14:05
【總結(jié)】第一篇:淺談用向量法證明立體幾何中的幾個定理 淺談用向量法證明立體幾何中的幾個定理 15號 海南華僑中學(xué)(570206)王亞順 摘要:向量是既有代數(shù)運算又有幾何特征的工具,在高中數(shù)學(xué)的解題中起...
2024-11-06 07:25
【總結(jié)】立體幾何知識概要及主要解題方法、典型例題一、內(nèi)容提要:立體幾何需要我們?nèi)ソ鉀Q的問題概括起來就是三個方面,證明位置關(guān)系、求距離和求角;具體內(nèi)容見下表:立體幾何提要主要內(nèi)容重點內(nèi)容位置關(guān)系兩條異面直線相互垂直、直線與平面平行、直線與平面斜交、直線與平面垂直、兩個平面斜交、兩個平面相互垂直兩條異面直線相互垂直、直線與平面平行、直
2024-10-04 16:40
【總結(jié)】第四課文化的繼承性與文化發(fā)展課標(biāo)要求解析中華民族傳統(tǒng)文化在現(xiàn)實生活中的作用,闡述繼承傳統(tǒng)文化要“取其精華,去其糟粕”的道理?!粲懻摚喝绾慰创齻鹘y(tǒng)習(xí)俗的價值?!魪墓偶墨I中摘錄一些至今仍被頻繁引用的傳統(tǒng)道德格言,討論繼承和發(fā)揚中華傳統(tǒng)美德在今天的作用?!粼O(shè)計展板:我國一些建筑、藝術(shù)、服飾等風(fēng)格和形式的變遷,體現(xiàn)著傳統(tǒng)與現(xiàn)代結(jié)合之美?;居^點1、
2025-05-11 22:03
【總結(jié)】1.如圖3-5,已知兩條異面直線所成的角為θ,在直線a、b上分別取E、F,已知A’E=m,AF=n,EF=l,求公垂線AA′的長d.EFEAAAAF?????解:22()EFEAAAAF??????2222()EAAAAFE
2024-11-18 00:19
【總結(jié)】立體幾何垂直證明題常見模型及方法垂直轉(zhuǎn)化:線線垂直線面垂直面面垂直;基礎(chǔ)篇類型一:線線垂直證明(共面垂直、異面垂直)(1)共面垂直:實際上是平面內(nèi)的兩條直線的垂直(只需要同學(xué)們掌握以下幾種模型)等腰(等邊)三角形中的中線菱形(正方形)的對角線互相垂直勾股定理中的三角形1:1
2025-03-24 04:14
【總結(jié)】空間幾何體題型與方法歸納(文科)考點一證明空間線面平行與垂直1、如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,點D是AB的中點,(I)求證:AC⊥BC1;(II)求證:AC1//平面CDB1;解析:(1)證明線線垂直方法有兩類:一是通過三垂線定理或逆定理證明,二是通過線面垂直來證明線線垂直;(2)證明線面平行也有兩類:一是通過
2025-03-24 03:55
【總結(jié)】秭歸縣屈原高中張鴻斌專題立幾問題的向量解法高考復(fù)習(xí)建議傳統(tǒng)的立幾問題是用立幾的公理和定理通過從“形”到“式”的邏輯推理,解決線與線、線與面、面與面的位置關(guān)系以及幾何體的有關(guān)問題,常需作輔助線,但有時卻不易作出,而空間向量解立幾問題則體現(xiàn)了“數(shù)”與“形”的結(jié)合,通過向量的代數(shù)計算解決問題,無須添加輔助線。用空間向量解立幾問題
2024-11-09 12:27