【總結(jié)】第一篇:不等式的證明方法 高考數(shù)學(xué)證明不等式的方法①利用函數(shù)的方法證明不等式成立。 步驟一:首先把不等式轉(zhuǎn)化關(guān)于某變量x的函數(shù),并且求出x的定義域。步驟二:證明該變量x的函數(shù)在其定義域的單調(diào)關(guān)系。...
2024-10-28 20:59
【總結(jié)】不等式的證明復(fù)習(xí)回顧雙向溝通練習(xí)總結(jié)數(shù)學(xué)組馬迪證明不等式的主要依據(jù)1a-b0ab,a-b0ab2不等式的性質(zhì)
2024-08-14 18:16
【總結(jié)】第一篇:不等式證明 不等式證明 : 比較法是證明不等式的最基本、最重要的方法之一,它可分為作差法、作商法 (1)作差比較: ①理論依據(jù)a-b0 ab;a-b=0 a=b;a-b a...
2024-10-29 11:38
【總結(jié)】第一篇:不等式證明方法 不等式證明方法 比較法是證明不等式的最基本、最重要的方法之一,它是兩個(gè)實(shí)數(shù)大小順序和運(yùn)算性質(zhì)的直接應(yīng)用,比較法可分為差值比較法(簡(jiǎn)稱為求差法)和商值比較法(簡(jiǎn)稱為求商法)。...
2024-10-28 23:26
【總結(jié)】第一篇:不等式證明 不等式的證明 比較法證明不等式 a2-b2a-bb0,求證:+b2a+b 2.(本小題滿分10分)選修4—5:不等式選講 (1)已知x、y都是正實(shí)數(shù),求證:x3+y...
2024-11-14 12:00
【總結(jié)】精品資源證明不等式的思想方法秘笈不等式的證明是不等式內(nèi)容的兩根主線之一,通過(guò)不等式的證明可以訓(xùn)練“等”與“不等”的變形方法,培養(yǎng)數(shù)學(xué)轉(zhuǎn)化與化歸的能力.一、證明不等式思想方法分類解析(Ⅰ)比較思想⑴作差比較.理論源泉是:;.⑵作商比較.理論源泉是:當(dāng)時(shí),;.例1:設(shè),,.求證:.分析一:,由,時(shí),,得,∴,即,故.分析二:∵,而,∴.點(diǎn)評(píng):⑴用比較
2025-04-08 04:11
【總結(jié)】江西師范大學(xué)09屆學(xué)士學(xué)位畢業(yè)論文不等式的證明方法畢業(yè)論文目錄1引言 32不等式證明的基本方法 4比較法 4作差比較法 4作商比較法 5分析法 5綜合法[2] 6反證法 6換元法 8三角代換法 8增量換元法 9放縮法 10“添舍”放縮 10利用基本不等式 10分式放縮 12迭合法 13數(shù)
2025-06-24 19:24
【總結(jié)】Mathwang幾個(gè)經(jīng)典不等式的關(guān)系一幾個(gè)經(jīng)典不等式(1)均值不等式設(shè)是實(shí)數(shù),等號(hào)成立.(2)柯西不等式設(shè)是實(shí)數(shù),則當(dāng)且僅當(dāng)或存在實(shí)數(shù),使得時(shí),等號(hào)成立.(3)排序不等式設(shè),為兩個(gè)數(shù)組,是的任一排列,則當(dāng)且僅當(dāng)或時(shí),等號(hào)成立.(4)切比曉夫不等式對(duì)于兩個(gè)數(shù)組:,,有當(dāng)且僅當(dāng)或時(shí),等號(hào)成立.二相關(guān)證明(1)用排
2025-04-17 08:24
【總結(jié)】第一篇:不等式證明 不等式證明 不等式是數(shù)學(xué)的基本內(nèi)容之一,它是研究許多數(shù)學(xué)分支的重要工具,在數(shù)學(xué)中有重要的地位,也是高中數(shù)學(xué)的重要組成部分,在高考和競(jìng)賽中都有舉足輕重的地位。不等式的證明變化大,...
2024-11-03 17:55
【總結(jié)】第一篇:2014年數(shù)學(xué)高考專題--用構(gòu)造局部不等式法證明不等式[模版] 2014年數(shù)學(xué)高考專題--用構(gòu)造局部不等式法證明不等式 有些不等式的證明,若從整體上考慮難以下手,可構(gòu)造若干個(gè)結(jié)構(gòu)完全相同的...
2024-10-26 22:06
【總結(jié)】不等式的證明松北高級(jí)中學(xué)吳宏亮【例1】已知a0,b0,求證:a3+b3≥a2b+ab2.(課本P12例3)即a3+b3≥a2b+ab2.證明一:比較法(作差)(a3+b3)-(a2b+ab2)=(a3-a2b)+(b3-ab2)=a2(a-b)+b2(b-a)
2024-11-10 05:07
【總結(jié)】數(shù)學(xué)教案-不等式的證明教學(xué)目標(biāo)1.進(jìn)一步熟練掌握比較法證明不等式;2.了解作商比較法證明不等式;3.提高學(xué)生解題時(shí)應(yīng)變能力.教學(xué)重點(diǎn)比較法的應(yīng)用教學(xué)難點(diǎn)常見(jiàn)解題技巧教學(xué)方法啟發(fā)引導(dǎo)式教學(xué)活動(dòng)(一)導(dǎo)入新課(教師活動(dòng))教師打出字幕(復(fù)習(xí)提問(wèn)),請(qǐng)三位同學(xué)回答問(wèn)題,教師點(diǎn)評(píng).(學(xué)
2024-11-24 20:56
【總結(jié)】選校網(wǎng)高考頻道專業(yè)大全歷年分?jǐn)?shù)線上萬(wàn)張大學(xué)圖片大學(xué)視頻院校庫(kù)2011數(shù)學(xué)同步測(cè)試—不等式的證明一、選擇題(本大題共10小題,每小題5分,共50分)1.四個(gè)不相等的正數(shù)a,b,c,d成等差數(shù)列,則 ()A. B. C. D.2.綜合法證明不等式中所說(shuō)的“由因?qū)Ч笔侵笇で笫共坏仁匠闪⒌? ( )A.必要條件 B.充分條件 C.充要條件 D
2024-08-29 16:51
【總結(jié)】第一篇:不等式3(基本不等式應(yīng)用與證明) 學(xué)習(xí)要求大成培訓(xùn)教案(不等式3基本不等式證明與應(yīng)用)基本不等式 ,,并掌握基本不等式中取等號(hào)的條件是:.算術(shù)平均數(shù):幾何平均數(shù) 2.設(shè)a≥0,b≥0則a...
2024-10-28 23:35
【總結(jié)】第一篇:均值不等式的證明 均值不等式的證明 設(shè)a1,a2,a3...an是n個(gè)正實(shí)數(shù),求證(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an).要簡(jiǎn)單的詳細(xì)過(guò)程,謝謝!...
2024-11-05 22:00