freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx不等式的證明方法教案[合集]-wenkub

2024-10-28 22 本頁(yè)面
 

【正文】 證明:即證 |ac|<c2ab即證(ac)2<c2ab即證 a22ac<ab∵a>0,∴即要證 a2c<b 即需證2+b<2c,即為已知∴ 不等式成立練習(xí)4:已知a∈R且a≠1,求證:3(1+a2+a4)>(1+a+a2)25放縮法放縮法是在證明不等式時(shí),把不等式的一邊適當(dāng)放大或縮小,利用不等式的傳遞性來(lái)證明不等式,是證明不等式的重要方法,技巧性較強(qiáng)常用技巧有:(1)舍去一些正項(xiàng)(或負(fù)項(xiàng)),(2)在和或積中換大(或換?。┠承╉?xiàng),(3)擴(kuò)大(或縮小)分式的分子(或分母)等。當(dāng)求證的不等式兩端是分項(xiàng)式(或分式)時(shí),常用作差比較,當(dāng)求證的不等式兩端是乘積形式(或冪指數(shù)式時(shí)常用作商比較)例1已知a+b≥0,求證:a3+b3≥a2b+ab2分析:由題目觀察知用“作差”比較,然后提取公因式,結(jié)合a+b≥0來(lái)說(shuō)明作差后的正或負(fù),從而達(dá)到證明不等式的目的,步驟是10作差20變形整理30判斷差式的正負(fù)。1125即得(a+)(b+)179。253。25252。1125即(a+)(b+)179。239。222。222。(1ab)+12516239。ab4證法四:(綜合法)∵a+b=1,a>0,b>0,∴a+b≥2ab,∴ab≤(1ab)+1179。abab1111(+t1)2+1(+t2)2+1(+t1+t12+1)(+t2+t22+1)4=2180。(bc)(CB)163。C.\(ab)(BA)163。179。0.\①式成立,.①分析:本題是一個(gè)連鎖不等式,也應(yīng)該用逐步分析的方法分別證明,但要注意隱含條件A+B+C=:因?yàn)閍、b、c0,A+B+C=p,欲證原不等式成立,則只需證3先證前一個(gè)不等式,只需證A(b+c2a)+B(a+c2b)+C(a+b2c)163。0。b179。0.(A+B+C()a+b+c)163。b2n+c2n,2an163。33232。248。an+bn+246。二、精講精練:例設(shè)a0,b0,求證:ab+ba≥a+b。所謂綜合法,即從已知條件出發(fā),根據(jù)不等式的性質(zhì)或已知的不等式,逐步推導(dǎo)出要證的不等式。ab=0 ab219。對(duì)于本節(jié)來(lái)講,復(fù)習(xí)有關(guān)不等式性質(zhì)的基礎(chǔ)知識(shí)、基本方法,而且還考察邏輯推理能力、分析問(wèn)題、解決問(wèn)題的能力。要在思想方法上下功夫。ab0比較法證明不等式的一般步驟:作差—變形—判斷—結(jié)論;為了判斷作差后的符號(hào),有時(shí)要把這個(gè)差變形為一個(gè)常數(shù),或者變形為一個(gè)常數(shù)與一個(gè)或幾個(gè)平方和的形式,也可變形為幾個(gè)因式的積的形式,以便判斷其正負(fù)。而分析法,則是由結(jié)果開(kāi)始,倒過(guò)來(lái)尋找原因,直至原因成為明顯的或者在已知中。分析:當(dāng)不等式是代數(shù)不等式時(shí),常用比差法,比差法的三步驟即為函數(shù)單調(diào)性證明的步驟。an+bn+分析:由2f(n)=2lg=lg231。a2n+b2n+c2nf(2n)=+bn+246。248。c2n+a2n,將上面三個(gè)不等式相加,得2anbn+2bn+2an163。aA+bB+cC(A+B+C()a+b+c)2求證:即證A(ba)+A(ca)+B(ab)+B(cb)+C(ac)+C(bc)163。c,則A179。(ca)(AC)163。0.(A+B+C()a+b+c)163。b179。0。0.\①式成立,:本題出題角度比較新穎,能力要求較高,三角形的邊角問(wèn)題一般用正弦、余弦定理進(jìn)行轉(zhuǎn)化變形,然而本題并沒(méi)有三角函數(shù),所以想到A+B+C=p.,再利用求差比較法證明。2=41111+t1+t2(+t1)(+t2)2222115(+t1+t12+1)(+t2+t22+1)(+t22)2t224=4=411t22t2244253225+t2+t2425=162179。2239。2 \1ab179。237。14416ab4239。239。ab4證法五:(三角代換法)供參考∵ a>0,b>0,a+b=1,故令a=sin2α,b=cos2α,α∈(0,11112(a+)(b+)=(sin2α+)(cosα+)absin2αcos2αsin4α+cos4α2sin2αcos2α+2(4sin2α)2+16==4sin22α4sin22αQsin22α163。2225239。114179。.ab4p)22第二篇:證明不等式方法不等式的證明是高中數(shù)學(xué)的一個(gè)難點(diǎn),題型廣泛,涉及面廣,證法靈活,錯(cuò)法多種多樣,本節(jié)通這一些實(shí)例,歸納整理證明不等式時(shí)常用的方法和技巧?!撸╝3+b3)(a2b+ab2)=a2(ab)b2(ab)=(ab)(a2b2)證明: =(ab)2(a+b)又∵(ab)2≥0a+b≥0∴(ab)2(a+b)≥0即a3+b3≥a2b+ab2例2 設(shè)a、b∈R+,且a≠b,求證:aabb>abba分析:由求證的不等式可知,a、b具有輪換對(duì)稱性,因此可在設(shè)a>b>0的前提下用作商比較法,作商后同“1”比較大小,從而達(dá)到證明目的,步驟是:10作商20商形整理30判斷為與1的大小證明:由a、b的對(duì)稱性,不妨解a>b>0則aabbabba=aabbba=(ab)ab∵ab0,∴ab1,ab0∴(ab)ab(ab)0=1即aabbabba>1,又abba>0∴aabb>abba練習(xí)1 已知a、b∈R+,n∈N,求證(a+b)(an+bn)≤2(an+1+bn+1)2基本不等式法利用基本不等式及其變式證明不等式是常用的方法,常用的基本不等式及變形有:(1)若a、b∈R,則a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時(shí),取等號(hào))(2)若a、b∈R+,則a+b≥ 2ab(當(dāng)且僅當(dāng)a=b時(shí),取等號(hào))(3)若a、b同號(hào),則 ba+ab≥2(當(dāng)且僅當(dāng)a=b時(shí),取等號(hào))例3 若a、b∈R,|a|≤1,|b|≤1則a1b2+b1a2≤1分析:通過(guò)觀察可直接套用: xy≤x2+y22證明: ∵a1b2b1a2≤a2+(1b2)2+b2(1a2)2=1∴b1a2+a1b2≤1,當(dāng)且僅當(dāng)a1+b2=1時(shí),等號(hào)成立練習(xí)2:若 ab0,證明a+1(ab)b≥33綜合法綜合法就是從已知或已證明過(guò)的不等式出發(fā),根據(jù)不等式性質(zhì)推算出要證明不等式。例6:已知a、b、c、d都是正數(shù)求證: 1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2分析:觀察式子特點(diǎn),若將4個(gè)分式商為同分母,問(wèn)題可解決,要商同分母除通分外,還可用放縮法,但通分太麻煩,故用放編法。1x,求證0<A<1證明: ∵x,y∈R+,且xy=1,x=secθ,y=tanθ,(0<θ<xy)∴ A=(secθ1secθ(tanθ+1tanθcos2θ=sinθ∵0<θ<x2,∴ 0<s2mθ <1因此0<A<1復(fù)習(xí)6:已知1≤x2+y2≤2,求證:12 ≤x2xy+y2≤3(2)比值換元:對(duì)于在已知條件中含有若干個(gè)等比式的問(wèn)題,往往可先設(shè)一個(gè)輔助未知數(shù)表示這個(gè)比值,然后代入求證式,即可。用數(shù)學(xué)歸納法證題時(shí)的兩個(gè)步驟缺一不可。2k+3〈二〉(2k+2)2>(2k+1)(2k+3)〈二〉4k2+8k+4>4k2+8k+3〈二〉4>3③∵③成立 ∴②成立,即當(dāng)n=k+1時(shí),原不等式成立由(1)(2)證明可知,對(duì)一切n≥2(n∈N),原不等式成立練習(xí)8:已知n∈N,且n>1,求證: 1n+1+1n+2+…+12n>13249構(gòu)造法根據(jù)求證不等式的具體結(jié)構(gòu)所證,通過(guò)構(gòu)造函數(shù)、數(shù)列、合數(shù)和圖形等,達(dá)到證明的目的,這種方法則叫構(gòu)造法。2bc+b2sinA+B2+c+π322 =4sinπ3=332∴sinA+sinB≠sinC≤332練習(xí)11 在△ABC中,sin A2sinB2sinC2≤184利用均值不等式等號(hào)成立的條件添項(xiàng)例16 :已知a、b∈R+,a≠b且a+b=1,求證a4+b4> 18分析:若取消a≠b的限制則a=b= 12時(shí),等號(hào)成立證明:∵a、b∈R+∴a4+3(12)4 ≥ 44a4 [(12)4]3=12a①同理b4+3(12)4 ≥b②∴a4+b4≥12(a+b)6(12)4=126(12)4=18③∵a≠b ∴①②中等號(hào)不成立∴③中等號(hào)不成立∴ 原不等式成立1.是否存在常數(shù)c,使得不等式 x2x+y+yx+2y≤c≤xx+2y+y2x+y對(duì)任意正數(shù)x,y恒成立? 錯(cuò)解:證明不等式x2x+y+ yx+2y≤xx+2y+y2x+y恒成立,故說(shuō)明c存在。正解:應(yīng)用比較法:yn1xn+xn1yn1x1y=(xnyn)(xn1yn1)xnyn① 當(dāng)x0,
點(diǎn)擊復(fù)制文檔內(nèi)容
黨政相關(guān)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1