【總結(jié)】第一篇:不等式的證明 復習課:不等式的證明 教學目標 (1).理解絕對值的幾何意義并能用其證明不等式和解絕對值不等式.(2).了解數(shù)學歸納法的使用原理.(3).會用數(shù)學歸納法證明一些簡單問題...
2024-11-08 22:00
【總結(jié)】不等式的證明松北高級中學吳宏亮【例1】已知a0,b0,求證:a3+b3≥a2b+ab2.(課本P12例3)即a3+b3≥a2b+ab2.證明一:比較法(作差)(a3+b3)-(a2b+ab2)=(a3-a2b)+(b3-ab2)=a2(a-b)+b2(b-a)
2024-11-10 05:07
【總結(jié)】第一篇:不等式證明方法 不等式證明方法 比較法是證明不等式的最基本、最重要的方法之一,它是兩個實數(shù)大小順序和運算性質(zhì)的直接應(yīng)用,比較法可分為差值比較法(簡稱為求差法)和商值比較法(簡稱為求商法)。...
2024-10-28 23:26
【總結(jié)】第一篇:不等式證明 不等式證明 : 比較法是證明不等式的最基本、最重要的方法之一,它可分為作差法、作商法 (1)作差比較: ①理論依據(jù)a-b0 ab;a-b=0 a=b;a-b a...
2024-10-29 11:38
【總結(jié)】第一篇:不等式證明 不等式的證明 比較法證明不等式 a2-b2a-bb0,求證:+b2a+b 2.(本小題滿分10分)選修4—5:不等式選講 (1)已知x、y都是正實數(shù),求證:x3+y...
2024-11-14 12:00
【總結(jié)】Forpersonaluseonlyinstudyandresearch;notformercialuse幾種常見的放縮法證明不等式的方法一、放縮后轉(zhuǎn)化為等比數(shù)列。例1.滿足:(1)用數(shù)學歸納法證明:(2),求證:解:(1)略(2)又,迭乘得:點評:把握“”這一特征對“”進行變形,
2025-07-24 05:50
【總結(jié)】第一篇:不等式證明 不等式證明 不等式是數(shù)學的基本內(nèi)容之一,它是研究許多數(shù)學分支的重要工具,在數(shù)學中有重要的地位,也是高中數(shù)學的重要組成部分,在高考和競賽中都有舉足輕重的地位。不等式的證明變化大,...
2024-11-03 17:55
【總結(jié)】天水師范學院本科畢業(yè)論文不等式證明方法的探畢業(yè)論文究目錄一.不等式的概念: -1-二.不等式的證明方法 -1-: -1-: -2-: -3-: -4-: -5-: -6-: -7-: -9-: -9-10、利用不等式定理: -10-11、利用泰勒公式: -10-12、利用函
2025-06-28 09:26
【總結(jié)】1本科生畢業(yè)論文題目不等式證明的若干種方法院系數(shù)學系專業(yè)數(shù)學與應(yīng)用數(shù)學2020年5月2本科生畢業(yè)設(shè)計(論文、創(chuàng)作)聲
2025-08-18 17:15
【總結(jié)】第一篇:均值不等式的證明 均值不等式的證明 設(shè)a1,a2,a3...an是n個正實數(shù),求證(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an).要簡單的詳細過程,謝謝!...
2024-11-05 22:00
【總結(jié)】第一篇:用均值不等式證明不等式 用均值不等式證明不等式 【摘要】:不等式的證明在競賽數(shù)學中占有重要地位.本文介紹了用均值不等式證明幾個不等式,我們在證明不等式時,常用到均值不等式。要求我們要認真分...
2024-10-28 10:42
【總結(jié)】第一篇:基本不等式與不等式基本證明 課時九基本不等式與不等式基本證明 第一部分:基本不等式變形技巧的應(yīng)用 基本不等式在求解最值、值域等方面有著重要的應(yīng)用,利用基本不等式時,關(guān)鍵在對已知條件的靈活...
2024-10-29 03:11
【總結(jié)】河北師范大學本科生畢業(yè)論文本科生畢業(yè)論文(設(shè)計)冊學 院:數(shù)學與信息科學學院專 業(yè):數(shù)學與應(yīng)用數(shù)學專業(yè)班 級:2010級B班學 生:指導教師:河北師范大學本科畢業(yè)論文(設(shè)計)任務(wù)書論文(設(shè)計)題目:關(guān)于不等式證明方法的探討學院:數(shù)學與信息科學學院專業(yè):數(shù)學與應(yīng)用
2025-06-18 20:22
【總結(jié)】不等式的證明——分析法證明不等式重要不等式:比較法之一(作差法)步驟:作差——變形——判斷與0的關(guān)系——結(jié)論學過的證明方法:比較法之二(作商法)步驟:作商——變形——判斷與1的關(guān)系——結(jié)論綜合法:利用某些已經(jīng)證明過的不等式(例如算術(shù)平均
2024-11-07 02:26
【總結(jié)】不等式的證明(二)一、不等式的證明1、比較法(1)比較法證明不等式的步驟(2)比較法經(jīng)常證明什么樣的不等式(3)作差之后變形的思維2、綜合法(1)定義(2)綜合法經(jīng)常證明什么樣的不等式(3)綜合法經(jīng)常證明不等式時經(jīng)常用到:(1)a2≥
2024-11-06 15:49