【總結】§橢圓橢圓及其標準方程(一)一、基礎過關1.設F1,F(xiàn)2為定點,|F1F2|=6,動點M滿足|MF1|+|MF2|=6,則動點M的軌跡是()A.橢圓B.直線C.圓D.線段2.設F1,F(xiàn)2是橢圓x225+y29=1的焦點,P為
2024-11-19 10:30
【總結】生活中存在著各種形式的拋物線洪澤外國語中學程懷宏拋物線的生活實例投籃運動拋物線的生活實例拋球運動拋物線的生活實例飛機投彈拋物線的生活實例探照燈的燈面拋物線及其標準方程(一)請同學們思考兩個問題1、我們對拋物線已有了哪些認識?2、二次函數(shù)的圖像拋物線的開口方向是什么?想一想?
2024-11-17 23:34
【總結】§橢圓的簡單幾何性質課時安排5課時從容說課本節(jié)主要是通過對橢圓的標準方程的討論,研究橢圓的幾何性質,而這種依據(jù)曲線的方法去討論曲線的幾何性質是學習解析幾何以來的第一次,因此在教學中,不僅要注意對研究結果的理解和應用,而且應注意對研究方法的學習.由于學生己對由函數(shù)的解析式研究函數(shù)的性質或其圖象的特點比較熟悉,所以在學習由
2024-12-08 22:39
【總結】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學橢圓及其標準方程課后知能檢測新人教B版選修1-1一、選擇題1.已知平面內兩定點A,B及動點P,設命題甲是:“|PA|+|PB|是定值”,命題乙是:“點P的軌跡是以A,B為焦點的橢圓”,那么甲是乙的()A.充分不必要條件B.必要不充分條件
2024-12-03 11:30
【總結】定義與方程罐車的橫截面數(shù)學實驗?[1]取一條細繩,?[2]把它的兩端固定在板上的兩點F1、F2?[3]用鉛筆尖(M)把細繩拉緊,在板上慢慢移動看看畫出的圖形F1F2M觀察做圖過程:[1]繩長應當大于F1、F2之間的距離。[2]由于繩長固定,所以M到兩個定點的距
2025-07-25 09:00
【總結】2020/12/25§(一)2020/12/25復習思考?、標準方程是什么??平面上到兩個定點的距離的和(2a)等于定長(大于|F1F2|)的點的軌跡叫橢圓。?定點F1、F2叫做橢圓的焦點。?兩焦點之間的距離叫做焦距(2c)。)0(12222????bab
2024-11-18 12:09
【總結】【成才之路】2021-2021學年高中數(shù)學橢圓及其標準方程練習北師大版選修1-1一、選擇題1.已知橢圓x225+y216=1上一點P到其一個焦點的距離為3,則點P到另一個焦點的距離為()A.2B.3C.5D.7[答案]D[解析]利用橢圓的定義可知|PF1|+
2024-11-28 19:11
【總結】橢圓的幾何性質1課題第1課時計劃上課日期:教學目標[知識與技能1.掌握橢圓的基本幾何性質:范圍、對稱性、頂點、長軸、短軸.2.感受如何運用方程研究曲線的幾何性質過程與方法情感態(tài)度與價值觀教學重難點橢圓的幾何性質——范圍、對稱性、頂點教學流程\內容\板
2024-11-20 00:30
【總結】雙曲線及其標準方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點的軌跡.平面內與兩定點F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內與兩定點F1、F2的距離的復習|M
2024-11-19 16:21
【總結】高中蘇教選修(2-1)圓錐曲線及橢圓水平測試題一、選擇題1.橢圓22143xy??的右焦點到直線33yx?的距離是()A.12B.32C.1D.3答案:A2.語句甲:動點P到兩定點A,B的距離之和2PAPBa??(0a?,且a為常數(shù));語句乙:P點的軌跡是橢圓,則語句
2024-11-15 11:50
【總結】江蘇省漣水縣第一中學高中數(shù)學雙曲線的標準方程(2)教學案蘇教版選修1-1教學目標:使學生進一步了解雙曲線的定義,熟記雙曲線的標準方程教學重點:根據(jù)已知條件求雙曲線的標準方程.橢圓和雙曲線標準形式中a,b,c間的關系.教學難點:用雙曲線的標準方程處理簡單的實際問題.教學過程:一、復習提問1.雙曲線的標準方程:
2024-11-20 00:31
【總結】雙曲線的簡單幾何性質(2)焦點在x軸上的雙曲線的幾何性質雙曲線標準方程:YX12222??byax0??byax1、范圍:x≥a或x≤-a2、對稱性:關于x軸,y軸,原點對稱。3、頂點:A1(-a,0),A2(a,0)4、軸:實軸A1A2虛軸
【總結】橢圓的標準方程第2課時橢圓的定義?平面內與兩個定點F1,F(xiàn)2的距離的和等于常數(shù)(大于F1F2)的點的軌跡叫做橢圓。?這兩個定點F1、F2叫做橢圓的焦點,兩個焦點間的距離叫做橢圓的焦距。不同點相同點定義參數(shù)y1F2FPBx
2024-11-18 15:26
【總結】已知方程表示焦點在x軸上的橢圓,則m的取值范圍是.22xy+=14m(0,4)變式:已知方程表示焦點在y軸上的橢圓,則m的取值范圍是.22xy+=1m
2024-11-18 01:22
【總結】§橢圓及其標準方程海城同澤中學郝宇2020年11月思考:1.圓的定義是什么?2.圓的標準方程是什么?1.平面內到一個定點的距離等于定長的點的軌跡是圓。2.圓的標準方程:(x-a)2+(y-b)2=r2探究:長的點的軌跡又是什么呢?當F1F2
2024-11-17 12:26