【總結(jié)】第一篇:不等式證明之放縮法 不等式證明之放縮法 放縮法的定義 所謂放縮法,即要證明不等式A (1)放縮的方向要一致。 (2)放與縮要適度。 (3)很多時(shí)候只對(duì)數(shù)列的一部分進(jìn)行放縮法,保留一...
2024-10-28 23:26
【總結(jié)】高考數(shù)學(xué)備考之放縮技巧證明數(shù)列型不等式,因其思維跨度大、構(gòu)造性強(qiáng),需要有較高的放縮技巧而充滿思考性和挑戰(zhàn)性,能全面而綜合地考查學(xué)生的潛能與后繼學(xué)習(xí)能力,因而成為高考?jí)狠S題及各級(jí)各類競(jìng)賽試題命題的極好素材。這類問(wèn)題的求解策略往往是:通過(guò)多角度觀察所給數(shù)列通項(xiàng)的結(jié)構(gòu),深入剖析其特征,抓住其規(guī)律進(jìn)行恰當(dāng)?shù)胤趴s;其放縮技巧主要有以下幾種:奇巧積累:(1)(2)(3)
2025-01-14 14:08
【總結(jié)】不等式的證明復(fù)習(xí)?不等式證明的常用方法:?比較法、綜合法、分析法反證法先假設(shè)要證明的命題不成立,以此為出發(fā)點(diǎn),結(jié)合已知條件,應(yīng)用公理、定義、定理、性質(zhì)等,進(jìn)行正確的推理,得到矛盾,說(shuō)明假設(shè)不正確,從而間接說(shuō)明原命題成立的方法。1.xy02.1x12.yxy
2025-08-01 17:41
【總結(jié)】第一篇:數(shù)學(xué)所有不等式放縮技巧及證明方法 高考數(shù)學(xué)所有不等式放縮技巧及證明方法 一、裂項(xiàng)放縮 例1.(1)求 例2.(1)求證:1+(2)求證: /7?4kk=1n22-1的值;(2)求證:...
2024-10-28 03:50
【總結(jié)】1.幾個(gè)重要的放縮不等式2.不等式的幾個(gè)常見(jiàn)結(jié)論練習(xí):
2025-06-26 05:29
【總結(jié)】:.解析:先構(gòu)造函數(shù)有,從而所以:解析:3.:.:解析:一方面:(法二)另一方面::(1)解析:構(gòu)造函數(shù),得到,再進(jìn)行裂項(xiàng),求和后可以得到答案函數(shù)構(gòu)造形式:,:解析:提示:函數(shù)構(gòu)造形式:當(dāng)然本題的證明還
2025-06-25 03:10
【總結(jié)】第一篇:高一不等式解法及放縮法證明練習(xí) 不等式 1.設(shè)a,b,c,d是任意正數(shù),求證:1 2.已知x,y,z 3.求證:-1)1+ 4.已知a,b,c?R,求證:a+b+c3ab+bc+...
2024-10-28 09:51
【總結(jié)】第一篇:淺談?dòng)梅趴s法證明不等式 淺談?dòng)梅趴s法證明不等式 山東省許曄 不等式的證明是中學(xué)數(shù)學(xué)教學(xué)的重點(diǎn),也是學(xué)生接受時(shí)感到頭痛的難點(diǎn)。不等式的證明方法很多。如:比較法(比差商法)、分析法、綜合法、...
2024-10-28 04:08
【總結(jié)】第一篇:如何靈活利用放縮法等方法證明不等式 如何靈活利用放縮法等方法證明不等式 儲(chǔ)曙曉 不等式的證明有多種方法,如放縮法、數(shù)學(xué)歸納法等,但是在運(yùn)用這些方法時(shí),:1+1117++×××+.(n?...
2024-10-28 00:12
【總結(jié)】20xx高考數(shù)學(xué)所有放縮技巧及不等式證明方法(構(gòu)造法)總的來(lái)說(shuō),高考中與不等式有關(guān)的大題(主要是證明題)一般常用均值不等式、構(gòu)造函數(shù)后用導(dǎo)數(shù)工具解、裂項(xiàng)相消等常見(jiàn)放縮法來(lái)解決。證明數(shù)列型不等式,因其思維跨度大、構(gòu)造性強(qiáng),需要有較高的放縮技巧而充滿思考性和挑戰(zhàn)性,能全面而綜合地考查學(xué)生的潛能與后繼學(xué)習(xí)能力,因而成為高考?jí)狠S題及各級(jí)各類競(jìng)賽試題命題的極好素
2025-07-28 09:18
【總結(jié)】......基本不等式習(xí)專題之基本不等式做題技巧【基本知識(shí)】1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(4)當(dāng)且僅當(dāng)
2025-05-13 23:45
【總結(jié)】數(shù)列不等式證明的幾種方法數(shù)列和不等式都是高中數(shù)學(xué)重要內(nèi)容,這兩個(gè)重點(diǎn)知識(shí)的聯(lián)袂、交匯融合,更能考查學(xué)生對(duì)知識(shí)的綜合理解與運(yùn)用的能力。這類交匯題充分體現(xiàn)了“以能力立意”的高考命題指導(dǎo)思想和“在知識(shí)網(wǎng)絡(luò)交匯處”設(shè)計(jì)試題的命題原則。下面就介紹數(shù)列不等式證明的幾種方法,供復(fù)習(xí)參考。一、巧妙構(gòu)造,利用數(shù)列的單調(diào)性例1.對(duì)任意自然數(shù)n,求證:。證明:構(gòu)造數(shù)列。所以,即為單調(diào)遞增數(shù)列
2025-07-23 16:02
【總結(jié)】精品資源數(shù)列中的不等式恒成立不等式的恒成立問(wèn)題是學(xué)生較難理解和掌握的一個(gè)難點(diǎn),以數(shù)列為載體的不等式恒成立問(wèn)題的檔次更高、綜合性更強(qiáng),是高三第二輪復(fù)習(xí)中不可多得的一個(gè)專題.例1:(2003年新教材高考題改編題)設(shè)為常數(shù),數(shù)列的通項(xiàng)公式為,若對(duì)任意不等式恒成立,求的取值范圍.解:,故等價(jià)于. ① ⑴當(dāng)時(shí),①式即為 ,此式對(duì)恒成立,故.(注意小于最小值,為什么不能
2025-06-25 02:18
【總結(jié)】第一篇:數(shù)列----利用函數(shù)證明數(shù)列不等式 數(shù)列已知數(shù)列{an}的前n項(xiàng)和為Sn,且a2an=S2+Sn對(duì)一切正整數(shù)n都成立。(Ⅰ)求a1,a2的值;(Ⅱ)設(shè)a10,數(shù)列{lg大值。 2已知數(shù)列...
2024-10-28 03:31
【總結(jié)】放縮法的常見(jiàn)技巧(1)舍掉(或加進(jìn))一些項(xiàng)(2)在分式中放大或縮小分子或分母。(3)應(yīng)用基本不等式放縮(例如均值不等式)。(4)應(yīng)用函數(shù)的單調(diào)性進(jìn)行放縮(5)根據(jù)題目條件進(jìn)行放縮。(6)構(gòu)造等比數(shù)列進(jìn)行放縮。(7)構(gòu)造裂項(xiàng)條件進(jìn)行放縮。(8)利用函數(shù)切線、割線逼近進(jìn)行放縮。使用放縮法的注意事項(xiàng)(1)放縮的方向要一致。(2)放與縮要適度。(3)很多時(shí)候只對(duì)數(shù)列
2025-06-26 16:31