【總結(jié)】二次函數(shù)的圖像與性質(zhì)專題練習(xí) 1.()如圖是二次函數(shù)y1=ax2+bx+c(a≠0)和一次函數(shù)y2=mx+n(m≠0)的圖象,當(dāng)y2>y1,x的取值范圍是 _________?。?.(2011?揚(yáng)州)如圖,已知函數(shù)y=與y=ax2+bx(a>0,b>0)的圖象交于點(diǎn)P.點(diǎn)P的縱坐標(biāo)為1.則關(guān)于x的方程ax2+bx+=0的解為 _________?。?/span>
2025-04-04 04:24
【總結(jié)】1、中考要求:1.經(jīng)歷探索、分析和建立兩個(gè)變量之間的二次函數(shù)關(guān)系的過(guò)程,進(jìn)一步體驗(yàn)如何用數(shù)學(xué)的方法描述變量之間的數(shù)量關(guān)系.2.能用表格、表達(dá)式、圖象表示變量之間的二次函數(shù)關(guān)系,發(fā)展有條理的思考和語(yǔ)言表達(dá)能力;能根據(jù)具體問(wèn)題,選取適當(dāng)?shù)姆椒ū硎咀兞恐g的二次函數(shù)關(guān)系.3.會(huì)作二次函數(shù)的圖象,并能根據(jù)圖象對(duì)二次函數(shù)的性質(zhì)進(jìn)行分析,逐步積累研究函數(shù)性質(zhì)的經(jīng)驗(yàn).
2025-01-10 10:56
【總結(jié)】二次函數(shù)專題訓(xùn)練(一)1、選擇題(每題5分,共50分),屬于二次函數(shù)的是(x為自變量)( ) A. B. C. D.2.函數(shù)y=x2-2x+3的圖象的頂點(diǎn)坐標(biāo)是( ) A.(1,-4) B.(-1,2) C.(1,2) D.(0,3)3.拋物線y=2(x-3)2的頂點(diǎn)在( ) A.第一象限 B.第二
2025-03-24 06:25
【總結(jié)】二次函數(shù)知識(shí)點(diǎn)總結(jié)及相關(guān)典型題目第一部分基礎(chǔ)知識(shí):一般地,如果是常數(shù),,那么叫做的二次函數(shù).(1)拋物線的頂點(diǎn)是坐標(biāo)原點(diǎn),對(duì)稱軸是軸.(2)函數(shù)的圖像與的符號(hào)關(guān)系.①當(dāng)時(shí)拋物線開(kāi)口向上頂點(diǎn)為其最低點(diǎn);②當(dāng)時(shí)拋物線開(kāi)口向下頂點(diǎn)為其最高點(diǎn).(3)頂點(diǎn)是坐標(biāo)原點(diǎn),對(duì)稱軸是軸的拋物線的解析式形式為.的圖像是對(duì)稱軸平行于(包括重合)軸的拋物線.:的形式,
【總結(jié)】此資料由網(wǎng)絡(luò)收集而來(lái),如有侵權(quán)請(qǐng)告知上傳者立即刪除。資料共分享,我們負(fù)責(zé)傳遞知識(shí)。 初中數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)總結(jié) 一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax+bx+c (...
2025-11-09 02:09
【總結(jié)】1.如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A和點(diǎn)B,其中點(diǎn)A的坐標(biāo)為(﹣2,0),拋物線的對(duì)稱軸x=1與拋物線交于點(diǎn)D,與直線BC交于點(diǎn)E.(1)求拋物線的解析式;(2)若點(diǎn)F是直線BC上方的拋物線上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)F使四邊形ABFC的面積為17,若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;2.已知在平面直
【總結(jié)】第五節(jié)二次函數(shù)(2)二次函數(shù)有如下性質(zhì):①函數(shù)的圖象是__________,拋物線頂點(diǎn)的坐標(biāo)是________,拋物線的對(duì)稱軸是________;②當(dāng)a0時(shí),拋物線開(kāi)口______,函數(shù)在x=處取____值________;在區(qū)間________上是減函數(shù),在________上是增函數(shù);③當(dāng)a0
2025-11-03 01:26
【總結(jié)】二次函數(shù)綜合練習(xí)題一、選擇題1.(2013江蘇蘇州,6,3分)已知二次函數(shù)y=x2-3x+m(m為常數(shù))的圖象與x軸的一個(gè)交點(diǎn)為(1,0),則關(guān)于x的一元二次方程x2-3x+m=0的兩實(shí)數(shù)根是().A.x1=1,x2=-1 B.x1=1,x2=2C.x1=1,x2=0 D.x1=1,x2=3【答案】B.【解析】∵二次函數(shù)y=x
2025-06-24 06:00
【總結(jié)】生命是永恒不斷的創(chuàng)造,因?yàn)樵谒鼉?nèi)部蘊(yùn)含著過(guò)剩的精力,它不斷流溢,越出時(shí)間和空間的界限,它不停地追求,以形形色色的自我表現(xiàn)的形式表現(xiàn)出來(lái)。--泰戈?duì)柕诙n時(shí)一、教學(xué)目標(biāo)1.使學(xué)生會(huì)用描點(diǎn)法畫(huà)出二次函數(shù)的圖像;2.使學(xué)生知道拋物線的對(duì)稱軸與頂點(diǎn)坐標(biāo);3.通過(guò)本節(jié)的學(xué)習(xí),繼續(xù)培養(yǎng)學(xué)生的觀察、分析、歸納、總結(jié)的能力;4.通過(guò)本節(jié)的教學(xué),繼續(xù)向?qū)W生進(jìn)行數(shù)形結(jié)合的
2025-06-07 13:29
【總結(jié)】二次函數(shù)知識(shí)經(jīng)典練習(xí)一、知識(shí)點(diǎn)之二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù),而可以為零.二次函數(shù)的定義域是全體實(shí)數(shù).2.二次函數(shù)的結(jié)構(gòu)特征:⑴等號(hào)左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2.⑵是常數(shù),是二次項(xiàng)系數(shù),是一次項(xiàng)系數(shù),是常數(shù)項(xiàng).二、知識(shí)點(diǎn)之二次
2025-06-18 07:21
【總結(jié)】二次函數(shù)教學(xué)設(shè)計(jì)課型:新授課課時(shí):一課時(shí)年級(jí):九年級(jí)一、教材分析《二次函數(shù)》是浙教版《數(shù)學(xué)》九年級(jí)上冊(cè)中的第一章第一節(jié),是《義務(wù)教育課程標(biāo)準(zhǔn)》“數(shù)與代數(shù)”領(lǐng)域的內(nèi)容。二次函數(shù)是九年級(jí)的第一節(jié)函數(shù)課,初中涉及到的“一元一次方程”,“二元一次方程組”,“一次函數(shù)”,“一元二次方程”,“反比例函數(shù)”這幾章代數(shù)的學(xué)習(xí)都為接下來(lái)的函數(shù)的進(jìn)一步學(xué)習(xí)奠定了基礎(chǔ)?!岸魏瘮?shù)”的學(xué)習(xí)
2025-04-07 02:41
【總結(jié)】二次方程根的分布與二次函數(shù)在閉區(qū)間上的最值歸納1、一元二次方程根的分布情況設(shè)方程的不等兩根為且,相應(yīng)的二次函數(shù)為,方程的根即為二次函數(shù)圖象與軸的交點(diǎn),它們的分布情況見(jiàn)下面各表(每種情況對(duì)應(yīng)的均是充要條件)表一:(兩根與0的大小比較即根的正負(fù)情況)分布情況兩個(gè)負(fù)根即兩根都小于0兩個(gè)正根即兩根都大于0一正根一負(fù)根即一個(gè)根小于0,一個(gè)大于0大致圖象()
【總結(jié)】二次函數(shù)單元卷一、選擇題,自變量x的值是()A.2B.-2C.1D.-1000xxxyyy1-1-10xy1()ABC
【總結(jié)】二次函數(shù)單元檢測(cè)題滿分:120分時(shí)間:90分鐘 一.選擇題(每小題4分,共40分)1、拋物線y=x2-2x+1的對(duì)稱軸是 ( ) (A)直線x=1 (B)直線x=-1 (C)直線x=2 (D)直線x=-22、(2008年武漢市)下列命題:①若,則;②若,則一元二次方程有兩個(gè)不相等的實(shí)數(shù)根;③若,則一元二次
【總結(jié)】二次函數(shù)與圖像1、如圖,在平面直角坐標(biāo)系中,開(kāi)口向上的拋物線與軸交于兩點(diǎn),為拋物線的頂點(diǎn),為坐標(biāo)原點(diǎn).若的長(zhǎng)分別是方程的兩根,且(1)求拋物線對(duì)應(yīng)的二次函數(shù)解析式;(2)過(guò)點(diǎn)作交拋物線于點(diǎn),求點(diǎn)的坐標(biāo);(3)在(2)的條件下,過(guò)點(diǎn)任作直線交線段于點(diǎn)求到直線的距離分別為,試求的最大值.