【總結(jié)】§計(jì)算導(dǎo)數(shù)學(xué)習(xí)目標(biāo)思維脈絡(luò)1.會(huì)用導(dǎo)數(shù)的定義求函數(shù)y=c,y=x,y=x2,y=1x的導(dǎo)數(shù).2.記住基本初等函數(shù)的求導(dǎo)公式.3.能利用求導(dǎo)公式求簡單函數(shù)的導(dǎo)數(shù).4.逐步深化對(duì)導(dǎo)函數(shù)與函數(shù)內(nèi)在聯(lián)系的認(rèn)識(shí).121.導(dǎo)函數(shù)
2024-11-18 13:32
【總結(jié)】甲和乙投入相同資金經(jīng)營同一商品,甲用1年時(shí)間掙到2萬元,乙用5個(gè)月時(shí)間掙到1萬元。從這樣的數(shù)據(jù)看來,甲、乙兩人誰的經(jīng)營成果更好?情境一:情境二:如右圖所示,向高為10cm的杯子等速注水,3分鐘注滿。若水深h是關(guān)于注水時(shí)間t的函數(shù),則下面兩個(gè)圖象哪一個(gè)可以表示上述函數(shù)?Ot/m
2024-11-17 15:20
【總結(jié)】課題:瞬時(shí)變化率??導(dǎo)數(shù)教學(xué)目標(biāo):(1)什么是曲線上一點(diǎn)處的切線,如何作曲線上一點(diǎn)處的切線?如何求曲線上一點(diǎn)處的曲線?注意曲線未必只與曲線有一個(gè)交點(diǎn)。(2)了解以曲代直、無限逼近的思想和方法(3)瞬時(shí)速度與瞬時(shí)加速度的定義及求解方法。(4)導(dǎo)數(shù)的概念,其產(chǎn)生的背景,如何求函數(shù)在某點(diǎn)處的
2024-11-19 21:26
【總結(jié)】導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用新課引入:導(dǎo)數(shù)在實(shí)際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實(shí)際生活中的某些最值問題..(面積和體積等的最值)(利潤方面最值)(功和功率等最值)解函數(shù)應(yīng)用題時(shí),要注意四個(gè)步驟:1、閱讀理解,審清題意讀題時(shí)要做到逐字逐句,讀懂題中的文字?jǐn)⑹?/span>
【總結(jié)】極值點(diǎn)教學(xué)目的:、極小值的概念.、極小值的方法來求函數(shù)的極值.教學(xué)重點(diǎn):極大、極小值的概念和判別方法,以及求可導(dǎo)函數(shù)的極值的步驟.教學(xué)難點(diǎn):對(duì)極大、極小值概念的理解及求可導(dǎo)函數(shù)的極值的步驟授課類型:新授課課時(shí)安排:1課時(shí)教具:多媒體、實(shí)物投影儀內(nèi)容分析:對(duì)極大、極小值概念的理
2024-11-20 00:26
【總結(jié)】第5課時(shí)導(dǎo)數(shù)的綜合應(yīng)用、極值、最值等..函數(shù)與導(dǎo)數(shù)是高中數(shù)學(xué)的核心內(nèi)容,函數(shù)思想貫穿中學(xué)數(shù)學(xué)全過程.導(dǎo)數(shù)作為工具,提供了研究函數(shù)性質(zhì)的一般性方法.作為“平臺(tái)”,可以把函數(shù)、方程、不等式、圓錐曲線等有機(jī)地聯(lián)系在一起,在能力立意的命題思想指導(dǎo)下,與導(dǎo)數(shù)相關(guān)的問題已成為高考數(shù)學(xué)命題的必考考點(diǎn)之一.函數(shù)與方
2024-12-05 06:30
【總結(jié)】導(dǎo)數(shù)的實(shí)際應(yīng)用【教學(xué)目標(biāo)】利用導(dǎo)數(shù)解決實(shí)際問題中的最優(yōu)化問題,掌握建立數(shù)學(xué)模型的方法,形成求解優(yōu)化問題的思路和方法.【教學(xué)重點(diǎn)】實(shí)際問題中的導(dǎo)數(shù)應(yīng)用【教學(xué)難點(diǎn)】數(shù)學(xué)建模一、課前預(yù)習(xí)::31頁例1、例2,總結(jié)利用導(dǎo)數(shù)解決生活中的優(yōu)化問題的一般步驟:例1有一塊邊長為a的正方形鐵板,現(xiàn)從鐵板的四個(gè)角各截去一個(gè)相同的小正方
2024-12-03 11:30
【總結(jié)】高二數(shù)學(xué)復(fù)習(xí)講義—導(dǎo)數(shù)及其應(yīng)用知識(shí)歸納1.導(dǎo)數(shù)的概念函數(shù)y=f(x),如果自變量x在x處有增量,那么函數(shù)y相應(yīng)地有增量=f(x+)-f(x),比值叫做函數(shù)y=f(x)在x到x+之間的平均變化率,即=。如果當(dāng)時(shí),有極限,我們就說函數(shù)y=f(x)在點(diǎn)x處可導(dǎo),并把這個(gè)極限叫做f(x)在點(diǎn)x處的導(dǎo)數(shù),記作f’(x)或y’|。即f(x)==。說明:(1)函數(shù)f(x)在點(diǎn)x
2025-08-09 17:07
【總結(jié)】導(dǎo)數(shù)的運(yùn)算練習(xí)與解析1一、選擇題1、已知函數(shù)f(x)在x=1處的導(dǎo)數(shù)為3,則f(x)的解析式可能為()A3(x-1)B.2(x-1)C.2x-1D.x-1解析:求導(dǎo)后帶入驗(yàn)證可得選A.[]2、曲線y=x3在點(diǎn)P處的切線斜率為3,則P點(diǎn)的坐標(biāo)為()A.(-2,-8
2024-12-04 19:53
【總結(jié)】山東省泰安市肥城市第三中學(xué)高中數(shù)學(xué)導(dǎo)數(shù)學(xué)案2新人教A版選修2-2學(xué)習(xí)內(nèi)容學(xué)習(xí)指導(dǎo)即時(shí)感悟【學(xué)習(xí)目標(biāo)】1.掌握導(dǎo)數(shù)的概念,導(dǎo)數(shù)公式及計(jì)算,導(dǎo)數(shù)在函數(shù)中的應(yīng)用。能夠用導(dǎo)數(shù)解決生活中的優(yōu)化問題。2.掌握定積分的概念,微積分基本定理及定積分的應(yīng)用?!緦W(xué)習(xí)重點(diǎn)】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用。【學(xué)習(xí)難點(diǎn)】導(dǎo)數(shù)在研究函數(shù)中
2024-11-19 20:37
【總結(jié)】函數(shù)的最大(小)值與導(dǎo)數(shù)21、函數(shù)的極值設(shè)函數(shù)f(x)在點(diǎn)x0附近有定義,?如果對(duì)X0附近的所有點(diǎn),都有f(x)f(x0),則f(x0)是函數(shù)f(x)的一個(gè)極小值,
2024-11-17 12:01
【總結(jié)】DEABC導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用同步練習(xí)1.一點(diǎn)沿直線運(yùn)動(dòng),如果由始點(diǎn)起經(jīng)過t秒后的距離為43215243sttt???,那么速度為零的時(shí)刻是()A.1秒末B.0秒C.4秒末D.0,1,4秒末2.某公司在
2024-12-05 09:29
【總結(jié)】2021年1月6日星期W蘇教高中數(shù)學(xué)選修2-2教學(xué)目標(biāo):(1)理解復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則;(2)能運(yùn)用運(yùn)算律進(jìn)行復(fù)數(shù)的四則運(yùn)算;練習(xí):(1+i)2=___;(1-i)2=___;____;11____;11??????iiii.______)
2024-11-30 11:22
【總結(jié)】北師大版高中數(shù)學(xué)選修2-2第三章《導(dǎo)數(shù)應(yīng)用》一、教學(xué)目標(biāo)::(1)了解實(shí)際背景中導(dǎo)數(shù)的含義,體會(huì)導(dǎo)數(shù)的思想及其內(nèi)涵在實(shí)際問題中的應(yīng)用;(2)理解世界問題中的具體情境,了解解題思路和方法。2.過程與方法:通過實(shí)際問題,讓學(xué)生進(jìn)一步理解導(dǎo)數(shù)的思想,感知導(dǎo)數(shù)的含義.3.情感.態(tài)度與價(jià)值觀:使學(xué)生感受到學(xué)習(xí)導(dǎo)數(shù)的實(shí)際背景,增強(qiáng)學(xué)習(xí)從生
2025-07-18 13:16
【總結(jié)】§導(dǎo)數(shù)在實(shí)際問題中的應(yīng)用學(xué)習(xí)目標(biāo)思維脈絡(luò)1.通過解決利潤最大、用料最省、效率最高等優(yōu)化問題,體會(huì)導(dǎo)數(shù)在實(shí)際問題中的作用.2.會(huì)用導(dǎo)數(shù)求閉區(qū)間上不超過三次的多項(xiàng)式函數(shù)的最大值、最小值.3.體會(huì)導(dǎo)數(shù)方法在研究函數(shù)性質(zhì)中的一般性和有效性.121.生活中的變化率問題在
2024-11-18 00:49