【總結】§導數(shù)在實際生活中的應用一、基礎過關1.煉油廠某分廠將原油精煉為汽油,需對原油進行冷卻和加熱,如果第x小時,原油溫度(單位:℃)為f(x)=13x3-x2+8(0≤x≤5),那么,原油溫度的瞬時變化率的最小值是________.2.設底為等邊三角形的直三棱柱的體積為V,那么其表面積最小時底面邊長為_
2024-12-05 06:24
【總結】1.1.2瞬時變化率——導數(shù)(二)【學習要求】1.理解函數(shù)的瞬時變化率——導數(shù)的準確定義和極限形式的意義,并掌握導數(shù)的幾何意義.2.理解導函數(shù)的概念,了解導數(shù)的物理意義和實際意義.【學法指導】導數(shù)就是瞬時變化率,理解導數(shù)概念可以結合曲線切線的斜率,結合瞬時速度,瞬時加速度;函數(shù)f(x)
2024-11-17 17:03
【總結】《導數(shù)在實際生活中的應用》同步檢測一、基礎過關1.煉油廠某分廠將原油精煉為汽油,需對原油進行冷卻和加熱,如果第x小時,原油溫度(單位:℃)為f(x)=13x3-x2+8(0≤x≤5),那么,原油溫度的瞬時變化率的最小值是________.2.設底為等邊三角形的直三棱柱的體積為V,那么其表面積最小時底面邊長為
2024-12-07 21:44
【總結】復合函數(shù)的導數(shù)復習回顧基本初等函數(shù)的求導公式簡記??????????????xxaxxeeaaaxxxxnxxCaxxxxnn1ln1lo.6sincocossi.2'''
2025-07-25 22:48
【總結】§導數(shù)的運算常見函數(shù)的導數(shù)課時目標,進一步理解運用概念求導數(shù)的方法.見函數(shù)的導數(shù)公式..1.幾個常用函數(shù)的導數(shù):(kx+b)′=______(k,b為常數(shù));C′=______(C為常數(shù));(x)′=______;(x2)′=______;(x3)′
2024-12-05 09:29
【總結】導數(shù)的實際應用【教學目標】利用導數(shù)解決實際問題中的最優(yōu)化問題,掌握建立數(shù)學模型的方法,形成求解優(yōu)化問題的思路和方法.【教學重點】實際問題中的導數(shù)應用【教學難點】數(shù)學建模一、課前預習::31頁例1、例2,總結利用導數(shù)解決生活中的優(yōu)化問題的一般步驟:例1有一塊邊長為a的正方形鐵板,現(xiàn)從鐵板的四個角各截去一個相同的小正方
2024-12-03 11:30
【總結】《導數(shù)在研究函數(shù)中的應用-極值》教學目標?(1)知識目標:能探索并應用函數(shù)的極值與導數(shù)的關系求函數(shù)極值,能由導數(shù)信息判斷函數(shù)極值的情況。?(2)能力目標:培養(yǎng)學生的觀察能力、歸納能力,增強數(shù)形結合的思維意識。?(3)情感目標:通過在教學過程中讓學生多動手、多觀察、勤思考、善總結,引導學生養(yǎng)成自主學習的良好習慣。?教學
2024-11-18 12:13
【總結】課題:瞬時變化率??導數(shù)教學目標:(1)什么是曲線上一點處的切線,如何作曲線上一點處的切線?如何求曲線上一點處的曲線?注意曲線未必只與曲線有一個交點。(2)了解以曲代直、無限逼近的思想和方法(3)瞬時速度與瞬時加速度的定義及求解方法。(4)導數(shù)的概念,其產生的背景,如何求函數(shù)在某點處的
2024-11-19 21:26
【總結】極大值與極小值課時目標(小)值的概念.,了解函數(shù)在某點取得極值的必要條件和充分條件.、極小值.1.若函數(shù)y=f(x)在點x=a的函數(shù)值f(a)比它在點x=a附近其他點的函數(shù)值都小,f′(a)=0,而且在點x=a附近的左側________,右側________.類似地,函數(shù)y=f(
【總結】高二數(shù)學組徐瑞虹生活中經常遇到求利潤最大、用料最省、效率最高等問題,這些問題通常稱為優(yōu)化問題.通過前面的學習,我們知道,導數(shù)是求函數(shù)最大(?。┲档膹娪辛ぞ撸@一節(jié),我們利用導數(shù),解決一些生活中的優(yōu)化問題.創(chuàng)設情景實例探究:學校舉行慶祝五一勞動節(jié)活動,需要張貼海報進行宣傳.現(xiàn)讓你設計一張如圖所示的豎向張貼的海報,要
【總結】函數(shù)的極值與導數(shù)(a,b)內,如果,那么函數(shù)在這個區(qū)間內單調遞增;如果,那么函數(shù)在這個區(qū)間內單調遞減.0)(??xf)(xfy?0)(??xf)(xfy?2.對x∈(a,b),如果
【總結】函數(shù)的最大(小)值與導數(shù)21、函數(shù)的極值設函數(shù)f(x)在點x0附近有定義,?如果對X0附近的所有點,都有f(x)f(x0),則f(x0)是函數(shù)f(x)的一個極小值,
2024-11-17 12:01
【總結】§導數(shù)在研究函數(shù)中的應用1.單調性課時目標掌握導數(shù)與函數(shù)單調性之間的關系,會利用導數(shù)研究函數(shù)的單調性,會求不超過三次的多項式函數(shù)的單調區(qū)間.1.導函數(shù)的符號與函數(shù)的單調性的關系:如果在某個區(qū)間內,函數(shù)y=f(x)的導數(shù)________,則函數(shù)y=f(x)這個區(qū)間上是增函數(shù);如果在某個區(qū)
【總結】最大值與最小值教學目的:⒈使學生理解函數(shù)的最大值和最小值的概念,掌握可導函數(shù))(xf在閉區(qū)間??ba,上所有點(包括端點ba,)處的函數(shù)中的最大(或最?。┲当赜械某浞謼l件;⒉使學生掌握用導數(shù)求函數(shù)的極值及最值的方法和步驟教學重點:利用導數(shù)求函數(shù)的最大值和最小值的方法.教學難點:函數(shù)的最大值、最小值與函數(shù)的極大值和
2024-11-20 00:26
【總結】第4課時導數(shù)在實際問題中的應用、用料最省、效率最高等優(yōu)化問題,體會導數(shù)在解決實際問題中的作用.,體會導數(shù)方法在研究函數(shù)性質中的一般性和有效性.飲料瓶大小對飲料公司利潤有何影響?下圖是某種品牌飲料的三種規(guī)格不同的產品,它們的價格如下表所示:規(guī)格(L)2價格(元)
2024-12-05 06:34