【總結(jié)】2019年高中數(shù)學(xué)計算題專項練習(xí)1 一.解答題(共30小題)1.計算:(1);(2). 2.計算:(1)lg1000+log342﹣log314﹣log48;(2). 3.(1)解方程:lg(x+1)+lg(x﹣2)=lg4;(2)解不等式:21﹣2x>. 4.(1)計算:2××(2)計算:2log510
2025-08-05 18:37
【總結(jié)】初高中銜接教材編排第一部分相交線1角的定義:具有公共端點的兩條射線組成的圖形叫做角。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。表示方法符號:∠兩條相交線出現(xiàn)四個角2余角和補角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補角。等角的余角相等,等角的補角相等3對頂角的定義如果一個角的兩邊分別是另一個角兩邊的反向
2025-08-05 02:07
【總結(jié)】山東省新人教B版2021屆高三單元測試5必修2第二章《平面解析幾何初步》(本卷共150分,考試時間120分鐘)一、選擇題(本大題共12小題,在每小題給出的四個選項中,只有一項是符合題目要求的)1.直線3ax-y-1=0與直線(a-23)x+y+1=0垂直,則a的值是()A.-1或13
2024-12-09 15:48
【總結(jié)】精品資源解析幾何練習(xí)題1、對于每個正自然數(shù)n拋物線與軸交于、兩點,以表示該兩點間的距離,則的值是(?。?A、 B、 C、 D、2、橢圓和雙曲線的公共焦點為F1、F2,P是兩曲線的一個交點,則的值是( ?。?A、 B、 C、 D、3、如右圖ABCD是直角梯形,AB=4,BC=3,AD=2,AD//BC,,一曲線M過C點且曲線上任意一點到A、B的距離之
2025-03-25 07:47
【總結(jié)】高中數(shù)學(xué)概率大題(經(jīng)典一)一.解答題(共10小題)1.在一次運動會上,某單位派出了有6名主力隊員和5名替補隊員組成的代表隊參加比賽.(1)如果隨機(jī)抽派5名隊員上場比賽,將主力隊員參加比賽的人數(shù)記為X,求隨機(jī)變量X的數(shù)學(xué)期望;(2)若主力隊員中有2名隊員在練習(xí)比賽中受輕傷,不宜同時上場;替補隊員中有2名隊員身材相對矮小,也不宜同時上場;那么為了場上參加比賽的5名隊員中至少有3名
2025-04-04 05:13
【總結(jié)】.數(shù)列練習(xí)題 一.選擇題(共16小題)1.?dāng)?shù)列{an}的首項為3,{bn}為等差數(shù)列且bn=an+1﹣an(n∈N*),若b3=﹣2,b10=12,則a8=( ) A.0B.3C.8D.112.在數(shù)列{an}中,a1=2,an+1=an+ln(1+),則an=( ?。.2+lnnB.2+(n﹣1)lnnC.
2025-08-05 19:24
【總結(jié)】高考高中數(shù)學(xué)數(shù)列專題大題組卷 一.選擇題(共9小題)1.等差數(shù)列{an}的前m項和為30,前2m項和為100,則它的前3m項和為( ?。〢.130 B.170 C.210 D.2602.已知各項均為正數(shù)的等比數(shù)列{an},a1a2a3=5,a7a8a9=10,則a4a5a6=( ?。〢. B.7 C.6 D.3.?dāng)?shù)列{an}的前n項和為Sn,若a1=1,an+1=
【總結(jié)】一.教學(xué)內(nèi)容:??????橢圓的幾何性質(zhì)?二.教學(xué)目標(biāo):通過橢圓標(biāo)準(zhǔn)方程的討論,使學(xué)生掌握橢圓的幾何性質(zhì),能正確地畫出橢圓的圖形,并了解橢圓的一些實際應(yīng)用.通過對橢圓的幾何性質(zhì)的教學(xué),培養(yǎng)學(xué)生分析問題和解決實際問題的能力.使學(xué)生掌握利用方程研究曲線性質(zhì)的基本方法,加深對直角坐標(biāo)系中曲線與方程的
2025-07-23 11:21
【總結(jié)】第六講立體幾何新題型【考點透視】(A),對于異面直線的距離,、直線和平面所成的角、、二面角的平面角、兩個平行平面間的距離的概念.(B)版.①理解空間向量的概念,掌握空間向量的加法、減法和數(shù)乘.②了解空間向量的基本定理,理解空間向量坐標(biāo)的概念,掌握空間向量的坐標(biāo)運算.③掌握空間向量的數(shù)量積的定義及其性質(zhì),掌握用直角坐標(biāo)計算空間向量數(shù)量積公式.④理解直線的方向向量
2025-08-05 18:17
【總結(jié)】華夏學(xué)校資料庫1、已知四邊形是空間四邊形,分別是邊的中點(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。2、如圖,已知空間四邊形中,,是的中點。求證:(1)平面CDE;AEDBC(2)平面平面。
2025-04-04 05:14
【總結(jié)】新課標(biāo)立體幾何??甲C明題匯總1、已知四邊形是空間四邊形,分別是邊的中點(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。證明:在中,∵分別是的中點∴同理,∴∴四邊形是平行四邊形。(2)90°30°
2025-04-04 05:07
【總結(jié)】高中課程復(fù)習(xí)專題——數(shù)學(xué)立體幾何一空間幾何體㈠空間幾何體的類型1多面體:由若干個平面多邊形圍成的幾何體。圍成多面體的各個多邊形叫做多面體的面,相鄰兩個面的公共邊叫做多面體的棱,棱與棱的公共點叫做多面體的頂點。2旋轉(zhuǎn)體:把一個平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱為
【總結(jié)】APCBOEF16.如圖,已知⊙O所在的平面,是⊙O的直徑,,C是⊙O上一點,且,與⊙O所在的平面成角,是中點.F為PB中點.(1)求證:;(2)求證:;(3)求三棱錐B-PAC的體積.17.如圖,四面體ABCD中,O、E分別是BD、BC的中點, (1)求證:平面BCD; (2)求異面直線AB與CD所成角的余弦值;
2025-01-14 11:10
【總結(jié)】…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………學(xué)校:___________姓名:___________班級:___________考號:___________…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………絕密★啟用前快樂數(shù)學(xué)層練習(xí)考試時間:100分鐘題號一
2025-04-04 05:11