【總結(jié)】正交分解問題?問題,理論上,一條直線由該直線上的一個(gè)向量確定了,那么平面呢?設(shè)、是同一平面內(nèi)的兩個(gè)不共1e2e線的向量,a是這一平面內(nèi)的任一向量,1e2e我們研究a與、之間的關(guān)系。1ea2e物理學(xué)中的力的分解模型OC=OM+ON=
2025-07-23 03:15
【總結(jié)】平面向量【基本概念與公式】【任何時(shí)候?qū)懴蛄繒r(shí)都要帶箭頭】:既有大小又有方向的量。記作:或。:向量的大?。ɑ蜷L(zhǎng)度),記作:或。:長(zhǎng)度為1的向量。若是單位向量,則。:長(zhǎng)度為0的向量。記作:?!痉较蚴侨我獾?,且與任意向量平行】(共線向量):方向相同或相反的向量。:長(zhǎng)度和方向都相同的向量。:長(zhǎng)度相等,方向相反的向量。。:;;(指向被減數(shù)):
2025-08-11 10:44
【總結(jié)】課題:平面向量的數(shù)量積(2)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、掌握平面向量數(shù)量積的坐標(biāo)表示;2、掌握向量垂直的坐標(biāo)表示的等價(jià)條件。【課前預(yù)習(xí)】1、(1)已知向量a和b的夾角是3?,|a|=2,|b|=1,則(a+b)2
2024-12-05 00:28
【總結(jié)】2.平面向量的坐標(biāo)運(yùn)算情景:我們知道,在直角坐標(biāo)平面內(nèi),每一個(gè)點(diǎn)都可用一對(duì)有序?qū)崝?shù)(即它的坐標(biāo))表示,如點(diǎn)A(x,y)等.思考:對(duì)于每一個(gè)向量如何表示?若知道平面向量的坐標(biāo),應(yīng)如何進(jìn)行運(yùn)算?1.兩個(gè)向量和的坐標(biāo)等于________________________________.即若a=(x1,y1),b
2024-12-05 10:15
【總結(jié)】第3課時(shí)平面向量的數(shù)量積基礎(chǔ)過關(guān)1.兩個(gè)向量的夾角:已知兩個(gè)非零向量和,過O點(diǎn)作=,=,則∠AOB=θ(0°≤θ≤180°)叫做向量與的.當(dāng)θ=0°時(shí),與;當(dāng)θ=180°時(shí),與;如果與的夾角是90°,我們說與垂直,記作.2.兩個(gè)向量的數(shù)量積的定義:已知兩
2025-06-08 00:02
【總結(jié)】《數(shù)學(xué)》必會(huì)基礎(chǔ)題型——《平面向量》【基本概念與公式】【任何時(shí)候?qū)懴蛄繒r(shí)都要帶箭頭】:既有大小又有方向的量。記作:或。:向量的大小(或長(zhǎng)度),記作:或。:長(zhǎng)度為1的向量。若是單位向量,則。:長(zhǎng)度為0的向量。記作:。【方向是任意的,且與任意向量平行】(共線向量):方向相同或相反的向量。:長(zhǎng)度和方向都相同的向量。:長(zhǎng)度相等,方向相反的向量。。:
2025-04-04 05:10
【總結(jié)】2021-2021學(xué)年高中數(shù)學(xué)同步訓(xùn)練:第2章平面向量章末檢測(cè)(蘇教版必修4)一、填空題1.與向量a=(1,3)的夾角為30°的單位向量是________________.2.已知三個(gè)力f1=(-2,-1),f2=(-3,2),f3=(4,-3)同時(shí)作用于某物體上一點(diǎn),為使物體保持平衡,現(xiàn)加上一個(gè)
2024-12-05 03:25
【總結(jié)】第一頁,編輯于星期六:點(diǎn)三十二分。,2.3平面向量的基本定理及坐標(biāo)表示2.3.1平面向量基本定理,第二頁,編輯于星期六:點(diǎn)三十二分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點(diǎn)三十二分...
2024-10-22 18:48
【總結(jié)】平面向量復(fù)習(xí)講義一.向量有關(guān)概念:1.向量的概念:既有大小又有方向的量,注意向量和數(shù)量的區(qū)別。向量常用有向線段來表示,注意不能說向量就是有向線段,為什么?(向量可以平移)。2.零向量:長(zhǎng)度為0的向量叫零向量,記作:,注意零向量的方向是任意的;3.單位向量:長(zhǎng)度為一個(gè)單位長(zhǎng)度的向量叫做單位向量(與共線的單位向量是);4.相等向量:長(zhǎng)度相等且方向相同的兩個(gè)向量叫相等向量,相等
2025-04-17 01:00
【總結(jié)】第一節(jié)平面向量的概念及其線性運(yùn)算1.向量的有關(guān)概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:長(zhǎng)度為0的向量,其方向是任意的.(3)單位向量:長(zhǎng)度等于1個(gè)單位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共線向量,規(guī)定:0與任一向量共線.(5)相等向量:長(zhǎng)度相等且方向相同的向量.(6)相反向量:長(zhǎng)度相等且方向相反的向量.
2025-04-16 23:06
【總結(jié)】平面向量應(yīng)用舉例平面幾何中的向量方法問題提出t57301p2???????,使得向量可以進(jìn)行線性運(yùn)算和數(shù)量積運(yùn)算,并具有鮮明的幾何背景,從而溝通了平面向量與平面幾何的內(nèi)在聯(lián)系,在某種條件下,平面向量與平面幾何可以相互轉(zhuǎn)化.、垂直、夾角、距離、全等、相似等,是平面幾何中常見的問題,而這些問題都可以由
2024-11-17 12:03
【總結(jié)】平面向量的坐標(biāo)運(yùn)算(二)一、填空題1.已知三點(diǎn)A(-1,1),B(0,2),C(2,0),若AB→和CD→是相反向量,則D點(diǎn)坐標(biāo)是________.2.若a=(2cosα,1),b=(sinα,1),且a∥b,則tanα=______.3.已知向量a=(2x+1,4),b=(2-x,3),若
【總結(jié)】章末過關(guān)檢測(cè)卷(二)第2章平面向量(測(cè)試時(shí)間:120分鐘評(píng)價(jià)分值:150分)一、選擇題(本大題共10小題,每小題5分,共50分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1.(2021·遼寧卷)已知點(diǎn)A(1,3),B(4,-1),則與向量AB→同方向的單位向量
【總結(jié)】§平面向量的數(shù)量積【學(xué)習(xí)目標(biāo)、細(xì)解考綱】的意義;體會(huì)數(shù)量積與投影的關(guān)系。。,可以處理有關(guān)長(zhǎng)度、角度和垂直問題?!局R(shí)梳理、雙基再現(xiàn)】ab與的夾角。______向量ab與,我們把______________叫ab與的數(shù)量積。(或________)記作___________即a
2024-12-02 08:37
【總結(jié)】平面幾何中的向量方法學(xué)習(xí)目標(biāo)、垂直、相等、夾角和距離等問題.——向量法和坐標(biāo)法.,體驗(yàn)向量在解決幾何問題中的工具作用,培養(yǎng)創(chuàng)新精神.合作學(xué)習(xí)一、設(shè)計(jì)問題,創(chuàng)設(shè)情境問題1:若O為△ABC重心,則=.問題2:水渠橫斷面是四邊形ABCD,,且||=||,則這個(gè)四邊形為.
2024-11-19 20:38