【總結(jié)】立體幾何題型歸類總結(jié)一、考點分析基本圖形1.棱柱——有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱。①★②四棱柱底面為平行四邊形平行六面體側(cè)棱垂直于底面直平行六面體底面為矩形長方體底面為正方形正四棱柱側(cè)棱與底面邊長相等正方體
2025-04-04 03:19
【總結(jié)】立體幾何復(fù)習(xí)學(xué)案班級學(xué)號姓名【課前預(yù)習(xí)】1.已知,lm是兩條不同的直線,,??是兩個不同的平面,有下列四個命題:①若l??,且???,則l??;②若l??,且//??,則l??;③若l??
2024-11-20 01:07
【總結(jié)】高中數(shù)學(xué)必修2立體幾何測試題及答案(一)一,選擇(共80分,每小題4分)1,三個平面可將空間分成n個部分,n的取值為()A,4;B,4,6;C,4,6,7;D,4,6,7,8。2,兩條不相交的空間直線a、b,必存在平面α,使得()A,aα、bα;B,aα、b∥α;C,a⊥α、b⊥α;D,aα、b⊥α。3,若p是兩條異面直線a、b外的任意一點,則()A,過點
2025-06-18 14:12
【總結(jié)】立體幾何大題1.如下圖,一個等腰直角三角形的硬紙片ABC中,∠ACB=90°,AC=4cm,CD是斜邊上的高沿CD把△ABC折成直二面角.ABC第1題圖ABCD第1題圖(1)如果你手中只有一把能度量長度的直尺,應(yīng)該如何確定A,B的位置,使二面角A-CD-B是直二面角?證明你的結(jié)論.(2)試在平面AB
2025-04-17 13:17
【總結(jié)】理科數(shù)學(xué)高考立體幾何大題精選不建系求解1.本小題滿分12分)(注意:在試題卷上作答無效)如圖,四棱錐S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E為棱SB上的一點,平面EDC平面SBC.(Ⅰ)證明:SE=2EB;(Ⅱ)求二面角A-DE-C的大小.2.(本小
2025-04-17 06:43
【總結(jié)】空間向量與立體幾何經(jīng)典題型與答案1已知四棱錐的底面為直角梯形,,底面,且,,是的中點(Ⅰ)證明:面面;(Ⅱ)求與所成的角;(Ⅲ)求面與面所成二面角的大小證明:以為坐標(biāo)原點長為單位長度,如圖建立空間直角坐標(biāo)系,則各點坐標(biāo)為(Ⅰ)證明:因由題設(shè)知,且與是平面內(nèi)的兩條相交直線,由此得面又在面上,故面⊥面(Ⅱ)解:因(Ⅲ)解:在
2025-06-18 13:50
【總結(jié)】1.(2013年高考遼寧卷(文))如圖,(I)求證:(II)設(shè)(文))如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,.(Ⅰ)證明:A1BD//平面CD1B1;(Ⅱ)求三棱柱ABD-A1B1D1的體積.3.(2013年高考
2025-04-17 13:06
【總結(jié)】立體幾何大題練習(xí)(文科):1.如圖,在四棱錐S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,側(cè)面SAD⊥底面ABCD.(1)求證:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱錐S﹣BCD的體積為,求側(cè)面△SAB的面積.【分析】(1)由梯形ABCD,設(shè)BC=a,則CD=a,AB=2a,運(yùn)用
2025-07-24 12:10
【總結(jié)】立體幾何專題:空間角和距離的計算一線線角1.直三棱柱A1B1C1-ABC,∠BCA=900,點D1,F(xiàn)1分別是A1B1和A1C1的中點,若BC=CA=CC1,求BD1與AF1所成角的余弦值。2.在四棱錐P-ABCD中,底面ABCD是直角梯形,∠BAD=900,AD∥BC,AB=BC=a,AD=2a,且PA⊥面ABCD,PD與底面成300角,(1)若AE⊥PD,E為垂足,求證:B
2025-04-04 04:20
【總結(jié)】立體幾何練習(xí)題1.四棱錐中,底面為平行四邊形,側(cè)面面,已知,,,.(1)設(shè)平面與平面的交線為,求證:;(2)求證:;(3)求直線與面所成角的正弦值.2.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,,AD=AC=1,O為AC的中點,PO平面ABCD,PO=2,M為PD的中點。(1)證明:PB//平面ACM;(2)證明:AD平面PAC
2025-03-25 06:43
【總結(jié)】立體幾何大題20道1、(17年浙江)如圖,已知四棱錐P-ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點.(I)證明:CE∥平面PAB;(II)求直線CE與平面PBC所成角的正弦值2、(17新課標(biāo)3)如圖,四面體ABCD中,△ABC是正三角形,AD=CD.(1)證明:AC⊥BD;(2)已知△ACD是直
【總結(jié)】專業(yè)整理分享文科立體幾何大題復(fù)習(xí) 一.解答題(共12小題)1.如圖1,在正方形ABCD中,點,E,F(xiàn)分別是AB,BC的中點,BD與EF交于點H,點G,R分別在線段DH,HB上,且.將△AED,△CFD,△BEF分別沿DE,DF,EF折起,使點A,B,C重合于點P,如圖2所示.
2025-04-17 01:27
【總結(jié)】高考立體幾何中直線、平面之間的位置關(guān)系知識點總結(jié)(文科)一.平行問題(一)線線平行:方法一:常用初中方法(1中位線定理;2平行四邊形定理;3三角形中對應(yīng)邊成比例;4同位角、內(nèi)錯角、同旁內(nèi)角)方法二:1線面平行線線平行方法三:2面面平行線線平行方法四:3線面垂直線線平行若,則。(二)線面平行:方法一:4線線平行線面平行方法二:5面面
2025-04-04 05:17
【總結(jié)】立體幾何選擇題:一、三視圖考點透視:①能想象空間幾何體的三視圖,并判斷(選擇題).②通過三視圖計算空間幾何體的體積或表面積.③解答題中也可能以三視圖為載體考查證明題和計算題.,該幾何體的體積為,則正視圖中x的值為()A.5B.4C
2025-04-04 05:14
【總結(jié)】解析幾何解答題1、橢圓G:的兩個焦點為F1、F2,短軸兩端點B1、B2,已知F1、F2、B1、B2四點共圓,且點N(0,3)到橢圓上的點最遠(yuǎn)距離為(1)求此時橢圓G的方程;(2)設(shè)斜率為k(k≠0)的直線m與橢圓G相交于不同的兩點E、F,Q為EF的中點,問E、F兩點能否關(guān)于過點P(0,)、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.
2025-04-04 05:15