【總結(jié)】高考文科數(shù)學(xué)立體幾何大題題型基本平行、垂直證明.(2013年高考北京卷(文))如圖,在四棱錐中,,,,平面底面,,和分別是和的中點(diǎn),求證:(1)底面;(2)平面;(3)平面平面【答案】(I)因為平面PAD⊥平面ABCD,且PA垂直于這個平面的交線AD所以PA垂直底面ABCD.(II)因為AB∥CD,CD=2AB,E為CD的中點(diǎn)所以AB∥DE,且AB=DE
2025-03-25 03:14
【總結(jié)】立體幾何大題練習(xí)(文科):1.如圖,在四棱錐S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,側(cè)面SAD⊥底面ABCD.(1)求證:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱錐S﹣BCD的體積為,求側(cè)面△SAB的面積.【分析】(1)由梯形ABCD,設(shè)BC=a,則CD=a,AB=2a,運(yùn)用勾股定理
2025-03-25 06:44
【總結(jié)】第1頁共40頁2022年國理科數(shù)學(xué)試題分類匯編7立體幾何一、選擇題1..(2022年新課標(biāo)1(理))如圖有一個水平放置的透明無蓋的正方體容器容器8cm將一個球放在容器口再向容器內(nèi)注水當(dāng)球面恰好接觸水面時測得水深為6cm如果不計容器的厚度則球的體積為( ?。〢.B.C.D.350cm?386c3172cm?3048
2025-04-07 04:36
【總結(jié)】-1-2022高考真題分類匯編:立體幾何一、選擇題1.【2022高考真題新課標(biāo)理7】如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()()A6()B9()C??()D??【答案】B【解析】由三視圖可知,該幾何體是三棱錐,
2025-01-11 00:59
【總結(jié)】第四課文化的繼承性與文化發(fā)展課標(biāo)要求解析中華民族傳統(tǒng)文化在現(xiàn)實(shí)生活中的作用,闡述繼承傳統(tǒng)文化要“取其精華,去其糟粕”的道理?!粲懻摚喝绾慰创齻鹘y(tǒng)習(xí)俗的價值?!魪墓偶墨I(xiàn)中摘錄一些至今仍被頻繁引用的傳統(tǒng)道德格言,討論繼承和發(fā)揚(yáng)中華傳統(tǒng)美德在今天的作用?!粼O(shè)計展板:我國一些建筑、藝術(shù)、服飾等風(fēng)格和形式的變遷,體現(xiàn)著傳統(tǒng)與現(xiàn)代結(jié)合之美?;居^點(diǎn)1、
2025-05-11 22:03
【總結(jié)】第一篇:立體幾何證明大題2 立體幾何證明大題 1.如圖,四面體ABCD中,AD^平面BCD,E、F分別為AD、AC的中點(diǎn),BC^CD.求證:(1)EF//平面BCD(2)BC^平面ACD. 2、...
2024-11-12 12:45
【總結(jié)】立體幾何大題的答題規(guī)范與技巧一、對于空間中的定理與判定,除公理外都要明確寫出條件,才有結(jié)論。需要多個條件時,要逐個寫出。對于平面幾何中的結(jié)論,要求寫出完整的條件,可以省略部分證明過程。二、一般地,有多個小題時,前幾小題應(yīng)該用幾何法,可以節(jié)省時間。最后一小題若幾何法較復(fù)雜,可以用坐標(biāo)法。三、建坐標(biāo)系的要求:使更多的點(diǎn)在坐標(biāo)軸上,坐標(biāo)系最好在幾何體的內(nèi)部。四、采用
2025-04-09 05:51
【總結(jié)】高中數(shù)學(xué)《立體幾何》大題及答案解析(理)1.(2009全國卷Ⅰ)如圖,四棱錐中,底面為矩形,底面,,,點(diǎn)在側(cè)棱上,。(I)證明:是側(cè)棱的中點(diǎn);求二面角的大小。2.(2009全國卷Ⅱ)如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)二
2025-06-18 13:50
【總結(jié)】2009高考數(shù)學(xué)解答題專題攻略----立體幾何09高考立體幾何分析與預(yù)測:立體幾何是高中數(shù)學(xué)中的重要內(nèi)容,也是高考的熱點(diǎn)內(nèi)容。該部分新增加了三視圖,對三視圖的考查應(yīng)引起格外的注意。立體幾何在高考解答題中,常以空間幾何體(柱,錐,臺)為背景,考查幾何元素之間的位置關(guān)系。另外還應(yīng)注意非標(biāo)準(zhǔn)圖形的識別、三視圖的運(yùn)用、圖形的翻折、求體積時的割補(bǔ)思想等,以及把運(yùn)動的思想引進(jìn)立體幾何。最近幾年綜合分
2025-01-15 10:22
【總結(jié)】百度搜索李蕭蕭文檔百度搜索李蕭蕭文檔2020北京市高三一模數(shù)學(xué)理分類匯編5:立體幾何【2020北京市豐臺區(qū)一模理】5.若正四棱錐的正視圖和側(cè)視圖如右圖所示,則該幾何體的表面積是()A.4B.4410?C.8D.4411?【答案】B【2020北京市房山區(qū)一模理】10.一
2025-08-14 15:16
【總結(jié)】立體幾何大題訓(xùn)練(1)1、如圖,三棱柱ABC-A1B1C1的底面是邊長為2的等邊三角形,AA1⊥底面ABC,點(diǎn)E,F(xiàn)分別是棱CC1,BB1上的點(diǎn),且EC=B1F=2FB.(1)證明:平面AEF⊥平面ACC1A1;(2)若AA1=3,求直線AB與平面AEF所成角的正弦值.2、如圖,在四棱錐中,平
2025-03-25 06:43
【總結(jié)】高考立體幾何中直線、平面之間的位置關(guān)系知識點(diǎn)總結(jié)(文科)一.平行問題(一)線線平行:方法一:常用初中方法(1中位線定理;2平行四邊形定理;3三角形中對應(yīng)邊成比例;4同位角、內(nèi)錯角、同旁內(nèi)角)方法二:1線面平行線線平行方法三:2面面平行線線平行方法四:3線面垂直線線平行若,則。(二)線面平行:方法一:4線線平行線面平行方法二:5面面
2025-04-04 05:17
【總結(jié)】19.如圖,在直三棱柱ABC﹣A1B1C1中,AB=AC=5,BB1=BC=6,D,E分別是AA1和B1C的中點(diǎn).(1)求證:DE⊥BC;(2)求三棱錐E﹣BCD的體積.【考點(diǎn)】直線與平面垂直的性質(zhì);棱柱、棱錐、棱臺的體積.【專題】證明題;數(shù)形結(jié)合;數(shù)形結(jié)合法;立體幾何.【分析】(1)取BC中點(diǎn)F,連結(jié)EF,AF,由直棱柱的結(jié)構(gòu)特征和中位線定理可得四邊形ADEF是平行四
2025-03-26 05:39
【總結(jié)】全國各地高考文科數(shù)學(xué)試題分類匯編:立體幾何1.[·重慶卷20]如圖1-4所示四棱錐P-ABCD中,底面是以O(shè)為中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M為BC上一點(diǎn),且BM=.(1)證明:BC⊥平面POM;(2)若MP⊥AP,求四棱錐P-ABMO的體積.
【總結(jié)】廣東高考數(shù)學(xué)真題匯編:立體幾何1、(2011?廣東文數(shù))正五棱柱中,不同在任何側(cè)面且不同在任何底面的兩頂點(diǎn)的連線稱為它的對角線,那么一個正五棱柱對角線的條數(shù)共有( ?。?A、20 B、15C、12 D、101解答:解:由題意正五棱柱對角線一定為上底面的一個頂點(diǎn)和下底面的一個頂點(diǎn)的連線,因為不同在任何側(cè)面內(nèi),故從一個頂點(diǎn)出發(fā)的對角線有2條.正五棱柱對角線的條
2025-04-07 21:28