【總結(jié)】搜集青島中考模擬題中的數(shù)學(xué)壓軸題——動點問題解題策略?近幾年來,運動型問題常常被列為中考的壓軸問題。動點問題屬于運動型問題,這類問題就是在三角形、矩形、梯形等一些幾何圖形上,設(shè)計一個或幾個動點,并對這些點在運動變化的過程中伴隨著等量關(guān)系、變量關(guān)系、圖形的特殊狀態(tài)、圖形間的特殊關(guān)系等進(jìn)行研究考察。問題常常集幾何、代數(shù)知識于一體,數(shù)形結(jié)?合,有較強的綜合性。&
2025-03-24 03:55
【總結(jié)】一次函數(shù)動點問題1如圖,直線的解析表達(dá)式為,且與軸交于點,直線經(jīng)過點,直線,交于點.(1)求點的坐標(biāo);(2)求直線的解析表達(dá)式;(3)求的面積;(4)在直線上存在異于點的另一點,使得與的面積相等,請直接寫出點的坐標(biāo).
2025-03-24 05:35
【總結(jié)】........二次函數(shù)存在性問題,動點問題,面積問題(m-2,0),B(m+2,0)兩點,記拋物線頂點為C,且AC⊥BC.(1)若m為常數(shù),求拋物線的解析式;(2)若m為小于0的常數(shù),那么(1)中的拋物線經(jīng)過怎么樣的平移可以使頂點在坐標(biāo)原點?(3)
2025-03-24 06:25
【總結(jié)】范文范例學(xué)習(xí)指導(dǎo)二次函數(shù)動點問題典型例題等腰三角形問題1.如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx的對稱軸為x=,且經(jīng)過點A(2,1),點P是拋物線上的動點,P的橫坐標(biāo)為m(0<m<2),過點P作PB⊥x軸,垂足為B,PB交OA于點C,點O關(guān)于直線PB的對稱點為D,連接CD,AD,過點A作AE⊥x軸,垂足為E.(1)求拋物線的解析式;(2)填空:①用含m
2025-08-05 01:44
【總結(jié)】....二次函數(shù)動點問題典型例題等腰三角形問題1.如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx的對稱軸為x=,且經(jīng)過點A(2,1),點P是拋物線上的動點,P的橫坐標(biāo)為m(0<m<2),過點P作PB⊥x軸,垂足為B,PB交OA于點C,點O關(guān)于直線PB的對稱點為D,連接CD,
2025-03-24 06:24
【總結(jié)】數(shù)學(xué)壓軸題二次函數(shù)動點問題,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-3,0)、B兩點,與y軸相交于點C(0,).當(dāng)x=-4和x=2時,二次函數(shù)y=ax2+bx+c(a≠0)的函數(shù)值y相等,連結(jié)AC、BC.(1)求實數(shù)a,b,c的值;(2)若點M、N同時從B點出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運動,其中一個點到達(dá)終點時,另一點也隨之停止運動.當(dāng)運動
【總結(jié)】浙教版初中數(shù)學(xué)關(guān)于動點問題的總結(jié)“動點型問題”是指題設(shè)圖形中存在一個或多個動點,它們在線段、關(guān)鍵:動中求靜.數(shù)學(xué)思想:分類思想函數(shù)思想方程思想數(shù)形結(jié)合思想轉(zhuǎn)化思想一、建立函數(shù)解析式函數(shù)揭示了運動變化過程中量與量之間的變化規(guī)律,和動點問題反映的是一種函數(shù)思想,由于某一個點或某圖形的有條件地運動變化,引起未知量與已知量間的一種變化關(guān)系,一、應(yīng)用勾股定理建立
2025-04-04 04:45
【總結(jié)】絕密☆啟用前1、已知四邊形ABCD是正方形,O為正方形對角線的交點,一動點P從B開始,沿射線BC運到,連結(jié)DP,作CN⊥DP于點M,且交直線AB于點N,連結(jié)OP,ON。(當(dāng)P在線段BC上時,如圖9:當(dāng)P在BC的延長線上時,如圖10)(1)請從圖9,圖10中任選一圖證明下面結(jié)論:
2025-08-11 02:02
【總結(jié)】初中數(shù)學(xué)動點問題練習(xí)題1、(寧夏回族自治區(qū))已知:等邊三角形的邊長為4厘米,長為1厘米的線段在的邊上沿方向以1厘米/秒的速度向點運動(運動開始時,點與點重合,點到達(dá)點時運動終止),過點分別作邊的垂線,與的其它邊交于兩點,線段運動的時間為秒.1、線段在運動的過程中,為何值時,四邊形恰為矩形?并求出該矩形的面積;CPQBAMN(2)線段在運動的過程中,四邊
2025-06-18 06:31
【總結(jié)】動點問題生成的函數(shù)圖象專題學(xué)習(xí)目標(biāo):..典型例題B.OSOC.D.A.OtSttOSSt,已知A、B是反比例函數(shù)(k>0,x<0)圖象上的兩點,BC∥x軸,,沿O→A→B→C(圖中“→”所示路線)勻速運動,⊥x軸,PN⊥y軸,垂足分別為M、,P點運動時間為t,則S關(guān)于t的函數(shù)圖象大致為(),AB=
2025-06-07 16:22
【總結(jié)】動點問題1、如圖1,E、F、G、H按照AE=CG,BF=DH,BF=nAE(n是正整數(shù))是關(guān)系,分別在兩鄰邊長a,na的矩形ABCD各邊上運動,設(shè)AE=x,四邊形EFGH的面積為S。ABCDEFGHnaa圖1(1)當(dāng)n=1,2是時,如圖2、圖3,觀察
2024-11-18 20:45
【總結(jié)】所謂“動點型問題”是指題設(shè)圖形中存在一個或多個動點,它們在線段、射線或弧線上運動的一類開放性題目.解決這類問題的關(guān)鍵是動中求靜,靈活運用有關(guān)數(shù)學(xué)知識解決問題.1.如圖,已知AB是兩同心圓的大圓的直徑,P為小圓上的一動點,若兩圓的半徑分別為5和2,且PA2+PB2的值為定值,則這個定值為_
2025-08-05 02:12
2024-11-06 17:02
【總結(jié)】第1頁共3頁初中數(shù)學(xué)動點問題綜合測試卷一、單選題(共5道,每道20分):如圖,線段AB的長為18厘米,動點P從點A出發(fā),沿AB以2厘米/秒的速度向點B運動,動點Q從點B出發(fā),沿BA以1厘米/秒的速度向點A運動.P,Q兩點同時出發(fā),當(dāng)點P到達(dá)點B時,點P
2025-08-11 21:26
【總結(jié)】二次函數(shù)最大面積例1如圖所示,等邊△ABC中,BC=10cm,點,分別從B,A同時出發(fā),以1cm/s的速度沿線段BA,AC移動,當(dāng)移動時間t為何值時,△的面積最大?并求出最大面積。A